

Learn Power Query

A low-code approach to connect and transform
data from multiple sources for Power BI and Excel

Linda Foulkes

Warren Sparrow

BIRMINGHAM—MUMBAI

Learn Power Query
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Karan Gupta
Senior Editor: Nitee Shetty
Content Development Editor: Tiksha Lad
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite

First published: July 2020

Production reference: 1160720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-971-9

www.packt.com

http://www.packt.com

To my special person:

It has certainly been a challenging, but extremely rewarding, phase of my
life authoring this book. I would like to thank my special person, Mick, for

his inspiration, understanding, and pushing me to meet deadlines. You have
contributed greatly to my life, and I appreciate you immensely. I love you.

To my co-author:

It is not often you find a co-author who will check all the boxes and turn
up for a Zoom meeting at 6 a.m. in his tie. Warren, thank you for working
alongside me, motivating me, and pouring your knowledge and expertise
into this book, and also, for giving me a breather near the end to complete

Learn Microsoft Office 2019 (which I wrote alongside Power Query).
I have enjoyed our long chats, your humor, as well as having your

support throughout the process. Congratulations on your first publication
– we did it!

-Linda Foulkes

This book is dedicated to Michelle, my wife, my best friend, and my love,
and to my two beautiful daughters, Danica and Jordan.

-Warren Sparrow

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the authors
Linda Foulkes is a Microsoft Office Master Trainer, Certified Educator, and Microsoft
Innovative Expert Educator and Trainer with an educational and corporate background
spanning over 25 years. As well as being certified as an IT trainer, Linda represented South
Africa at the Microsoft Global Forum in Redmond in 2015. She has certified and coached
students to compete at the Microsoft Office Specialist Championships in Texas. She has
also published Learn Microsoft Office 2019 through Packt. Linda has also presented at
conferences and conducted webinars for SchoolNet SA, and hosted TeachMeets and
MicrosoftMeets. She has a keen interest in e-learning and has developed e-learning paths
and content for the Microsoft Office suite of programs.

Warren Sparrow is a Microsoft, Adobe, and National Geographic Certified Educator.
He has been a Microsoft Innovative Expert Educator for the last 6 years, and a fellow
in 2015. Warren is regularly invited to be a guest speaker at different global educational
events, including the annual Microsoft conference on Office 365 in 2015. His core focus
is long-term strategy, training, and technology implementation. He has provided training
and development in both the education and corporate sectors. He also played an advisory
role to the Western Cape Education Department (South Africa), giving assistance
on the roll-out of hardware and software, as well as the training of educators and the
implementation of technology in school classrooms.

Acknowledgements
Both Warren and I have enjoyed the process of writing this book immensely and would
like to thank the Packt team for their dedication to this process. Without the support of
a strong team toward the end of chapter writing, the review process, meeting deadlines,
and the submission of final proofs would have been a near-impossible task to achieve. We
would like to thank all those involved, but extend a sincere, special gratitude to Karan
Gupta, Acquisition Editor, who devoted 100% of his time to the initial stages of the book
and was always available for support throughout, to the Content Development Editor,
Tiksha Lad, for her encouragement and professional contribution, and to Prajakta Naik,
for checking that we were on course to meet deadlines and for offering support where
needed. Last, but by no means least, we would like to thank our reviewer, Vishwanath
Muzumdar, for being our critic and advising us accordingly in order to enable us to finish
this great resource.

About the reviewer
Vishwanath Muzumdar has more than 8 years' experience in information technology
consulting, business analysis, business development, and business process management
in the business intelligence space.

He is an MS Power BI developer (champion) in the creation of powerful visual reporting
for clients. His goal is to utilize his strong prioritization skills, analytical ability, team
management skills, and expertise in the Microsoft Power BI reporting tool in order to
achieve organizational objectives.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents
Preface

Section 1: Overview of Power Pivot and Power Query

1
Installation and Setup

Technical requirements� 4
Introducing Power Pivot� 4
Power Pivot Office versions and
differences� 5

Introduction to Power BI� 6
Power BI versions and differences� 6
Mac/Apple� 10

Introduction to Power Query� 11
Features of Power Query� 11

Power Query Office versions and
differences� 12
Installing Power Query in Office 2013
and 2010� 15
Activating my Power Query/Pivot again� 16
Launching Power Query, Power Pivot,
and Power BI� 18
Launching Power Query within Excel� 18
Accessing Power Query from Power BI� 18

Summary� 20

2
Power Pivot Basics, Inadequacies, and Data Management

Technical requirements� 22
Creating a pivot table� 23
Creating a Power Pivot� 30
Creating a table in Excel� 30
Adding tables to the data model� 34

Creating relationships between tables� 37

Power Query to the rescue� 39
Creating a calculated column� 39
Creating a calculated field� 44
Creating a Power Pivot table� 46

ii Table of Contents

Shortcomings of Power Pivot � 47
Problem 1 – selecting multiple items� 47
Problem 2 – Power Pivot preview� 48

Problem 3 – calculated fields� 48
Problem 4 – Microsoft Office versions� 48

Summary� 49

3
Introduction to the Power Query Interface

Technical requirements� 52
The Power Query window and
its elements� 52
The main ribbon and tabs� 53
The navigation pane or the Queries list� 54
Data table preview� 57
The Query Settings pane� 59
Working with APPLIED STEPS� 60
Investigating the View settings� 62
Using Advanced Editor� 67

Creating a basic power query� 76

Discovering the Load
To… options� 79
Changing the default custom load
settings� 80
Loading queries to the worksheet
manually� 83

Data profiling tips� 89
Column profile� 92
Column quality� 92
Column distribution� 94

Summary� 94

4
Connecting to Various Data Sources Using Get & Transform

Technical requirements� 96
A brief introduction to databases�96
Connecting from a table or range�99
Connecting data to the web� 103
Connecting from a relational
database� 111
Connecting through Excel's Get &
Transform tool� 112
Connecting through Power BI� 114

Understanding custom
connections� 117
Connecting from Workbook� 120
Connecting from a folder� 124

Exploring data source settings� 133
From Excel� 133

Summary � 135

Table of Contents iii

Section 2: Power Query Data
Transformations

5
Transforming Power Query Data

Technical requirements� 140
Turning data with the unpivot
and pivot tools� 140
Refreshing data� 144

Basic column and row tools� 147
Removing columns� 147
Removing top or bottom rows� 148
Using the index column� 149
Creating a conditional column with the
if…then…else statement� 150
Filtering data using the And/Or
conditions� 153
Creating single-criteria filters� 156
Creating dynamic multiple-criterion
filters� 158
Removing duplicate rows� 161

Replacing null values� 162
Working with the header row� 163
Splitting columns� 164

Merging and appending tools� 167
Merging columns using combine� 167
Merging text and values into one
column� 170
Appending (combining) tables� 172

Grouping data� 175
Working with extraction tools� 177
Extracting an age from a date� 177
Extracting columns� 178
Using the extract column features� 179

Summary� 182

6
Advanced Power Queries and Functions

Technical requirements� 184
Writing an IF function in Power
Query� 184
Creating a parameter table
for queries� 191
Changing the monthly data source� 196

Understanding the Index and
Modulo functions� 201
Beginning with the modulo function� 201
Understanding index functions� 204

Appending multiple files� 214
Appending multiple tabs� 220
Summary � 223

iv Table of Contents

7
Automating Reports in Power Query

Technical requirements� 226
Understanding the storage
modes and dataset types� 226
Viewing the Power BI Desktop Storage
mode setting � 227

Choosing the Import storage
mode setting� 231
Looking at where Power BI stores data� 234
Investigating whether Microsoft SQL
Server Analysis Services is running� 234

Understanding the Power BI
refresh types� 235
Learning how to refresh a OneDrive
connection� 236
Viewing and performing a OneDrive
refresh� 241
Setting a scheduled refresh� 243
Incremental refresh� 244
Automatic page refresh� 245
Dataflow refresh� 246

Summary� 246

8
Creating Dashboards with Power Query

Technical requirements� 248
Creating a basic power pivot
and PivotChart� 248
Using Power BI to collect and
connect data� 252
Combining files� 258

Using Power BI to add data to
a data model� 267

Selecting data visualization, a
dataset, and an appropriate
chart� 272
Saving, publishing, and sharing
a dashboard� 279
Sharing a dashboard� 282
Best practices� 292

Summary� 293

Section 3: Learning M

9
Working with M

Technical requirements� 298
The beginnings of M� 298
Understanding the M syntax and
learning how to write M � 299

Using #shared to return library
functions� 301
Text data types� 301
Number data types� 302

Table of Contents v

Lists� 304
Records� 305
Table data types� 306

Searching for relevant data� 307

Importing a CSV file using M� 308
Summary� 310

10
Examples of M Usage

Technical requirements� 314
Merging using the concatenate
formula� 314
Data type conversions� 321
Setting up a SQL server� 322
Installing SQL Server

Management Studio� 329
Using parameters� 335
Parameterizing a data source� 335
Using parameters in the Data view� 348

Summary� 349

11
Creating a Basic Custom Function

Technical requirements� 352
Creating a function manually
using M� 352
Changing the file path of the query to
a local path� 354

Creating the function manually� 355
Testing the parameter function� 358
Creating a date/time column using
three M functions� 364

Summary� 373

12
Differences Between DAX and M

Technical requirements� 376
Learning about the DAX and M
functionality� 376
Constructing DAX syntax� 377
Constructing DAX formulas in Excel� 380
Using IntelliSense� 380
Creating a DAX formula� 382

Understanding the DAX formula

and storage engine� 383
Creating a calculated column� 384
Creating calculated measures� 385
Using quick measures� 386
Formulating a DAX measure from
scratch� 389
Organizing measures� 395

Summary� 396
Other Books You May Enjoy

Preface
Power Query is a data connection technology that allows you to connect, combine, and
refine data sources to meet all of your analysis requirements. This book will take you on
a journey through Power Query, starting with the shortcomings of other tools regarding
data analysis and management. Then, we will delve into the Power Query interface,
looking at how to connect, combine, and refine data with really powerful query tools and
learning how to use the Power Query M formula language, which opens up a whole new
world of data mashup. We will complete our journey by creating dashboards and multi-
dimensional reports in Power Query.

Who this book is for
This book would suit professional business analysts, data analysts, BI professionals, and
Excel users who wish to take their skills to the next level by learning how to collect,
combine, and transform data into insights using Power Query.

What this book covers
Chapter 1, Installation and Setup. Power Query is now integrated into all the data analysis
or business intelligence tools from Microsoft such as Excel, Analysis Services, and Power
BI. It allows users to discover, combine, and refine their data from various sources. In this
chapter, you will learn how to install and access these tools across multiple office versions.

Chapter 2, Power Pivot Basics, Inadequacies, and Data Management, introduces you to
the shortcomings of Power Pivot in handling complex data and offers Power Query as a
solution to retrieve, extract, and reshape data. You will be taken through an example to
demonstrate the differences between Power Query and Power Pivot and to learn how to
convert worksheet data into a table.

viii Preface

Chapter 3, Introduction to the Power Query Interface, introduces you to the Power Query
interface and takes you on a journey through its tabs, creating a basic Power Query query
and visiting the View tab in Power BI to set data profiling options, as well as discovering
how to send data back to an Excel workbook.

Chapter 4, Connecting to Various Data Sources Using Get & Transform, explains how to
connect to numerous data sources using the Get & Transform tool, known as Power
Query, and investigate data source settings.

Chapter 5, Transforming Power Query Data, covers how to reshape tabular data, including
altering rows, columns, and tables using a multitude of Power Query tools.

Chapter 6, Advanced Power Queries and Functions, concentrates on the more advanced
queries and functions in Power Query, such as the IF, Index, and Modulo functions.
You will learn to create parameters to alter query paths and append multiple files and
sheet tabs.

Chapter 7, Automating Reports in Power Query, goes through the options provided by
Power Query to streamline and automate reports from multiple sources. In this chapter,
we will look at creating a report from multiple files in a folder to a single dataset, which
will update when new data is added to the Power Query data folder.

Chapter 8, Creating Dashboards with Power Query, looks at dashboards, which are
a business-intelligent, single-canvas page that allows the user to tell a story through
various visualizations created from table data to highlight important data points for an
organization. In this chapter, you will learn how to create a dashboard from connected
data, select a visualization type, and publish and customize the dashboard. We will also
cover multi-dimensional reporting.

Chapter 9, Working with M introduces the Power Query M language and explains how to
use and write the syntax, including steps to reveal a list of functions and definitions. This
chapter will start by explaining how M got its name and how Microsoft tried to change
it. We will also look at the structure and syntax of M. All programming languages have
a specific structure and once you master the structure of M, it becomes much easier to
understand and use. We will look at the main data types and functions and provide a
walkthrough demonstration of how to use each of these data types, before looking at how
to import a CSV file using M.

Preface ix

Chapter 10, Examples of M Usage, concentrates on a few examples of using M, including the
concatenate function, which first compares the difference between formulas in Excel and
Power BI before looking at the ampersand operator (&) and how it can be used. This chapter
examines how Text.From and Text.Combine can be used to join and concatenate
different strings, dates, and columns. There is an extensive section on how to set up your
own free and legal SQL server for you to use for non-commercial purposes. It has full
functionality, and we will also cover how to import the AdventureWorks databases
into SQL for us to be able to use them as a resource. Lastly, this chapter concentrates on
parameters and how they can be used effectively in filtering data sources, adding parameters
to control statements that allow us to filter according to different dates. We will continue by
adding parameters to order objects and columns in ascending and descending order, before
looking at how we can make these changes in Power BI's Data view.

Chapter 11, Creating a Basic Custom Function, will take you through the steps to create
functions manually using M in Power Query, as well as how create a date and time column
using functions.

Chapter 12, Differences Between DAX and M, looks at the differences between M, which
is the mashup functional language of Power Query and is used to query numerous data
sources, and DAX, which allows functions to work on data stored in tables, much like
Excel. In this chapter, you will learn about the differences between the two languages by
working through examples and learning how to create calculated measures.

To get the most out of this book
We assume that you have a solid working knowledge of Excel up to an advanced level and
that you can construct and troubleshoot formulas and functions. You should be familiar
with all that Excel has to offer and be at a stage to advance your skills and want to learn
more about data analysis and data management as an effective business solution. Refer to
the following table for the software used in the book:

x Preface

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to copy/pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register at www.packt.com.

2.	 Select the Support tab.

3.	 Click on Code Downloads.

4.	 Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

•	 WinRAR/7-Zip for Windows

•	 Zipeg/iZip/UnRarX for Mac

•	 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Power-Query/. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/2ZeYxfb.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/
https://bit.ly/2ZeYxfb

Preface xi

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

https://static.packt-cdn.com/downloads/9781839219719_
ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The basic M syntax is relatively straightforward, provided that we
follow the correct structure with let and in."

A block of code is set as follows:

let
 Source = ""
in
 Source

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The variable name is also the name of APPLIED STEPS found on the right side of
the screen."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

https://static.packt-cdn.com/downloads/9781839219719_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839219719_ColorImages.pdf
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata

xii Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

This is the first part of this Learn Power Query book. It will take you through the steps to
access Power Query across different versions of Microsoft Excel and to install the Power
BI engine. We will look at Power Pivot and its shortcomings and how Excel users find
it difficult to clean their data in Power Pivot. We will solve this problem by introducing
Power Query through an example. We will discuss the use of Power Query, Power Pivot,
and Power BI, and then delve into the basics of Power Query and Power Pivot.

This section comprises the following chapters:

•	 Chapter 1, Installation and Setup

•	 Chapter 2, Power Pivot Basics, Inadequacies, and Data Management

•	 Chapter 3, Introduction to the Power Query Interface

•	 Chapter 4, Connecting to Various Data Sources Using Get & Transform

Section 1:
Overview of

Power Pivot and
Power Query

1
Installation and

Setup
There are many reasons why you would need to use Power Query, but here is a short
summary of the reasons why Power Query is a very necessary step if you wish to prepare
data for analysis, manipulation, or visualization:

Figure 1.1 – Features of Power Query

4 Installation and Setup

Power Query is now integrated into all the data analysis and business intelligence tools
from Microsoft, such as Excel, Analysis Services, and Power BI. It allows users to discover,
combine, and refine their data from various sources.

In this chapter, we will take you through the steps you will need to follow to access Power
Query across different versions of Microsoft Excel and install the Power BI engine. We
will look at Power Pivot and its shortcomings and how Excel users find it difficult to clean
their data in Power Pivot. We will solve this problem by introducing Power Query through
an example. After that, we will discuss the use of Power Query, Power Pivot, and Power BI,
and then delve into Power Query and Power Pivot basics.

In this chapter, we're going to cover the following main topics:

•	 Introduction to Power Pivot, Power BI, and Power Query

•	 The respective Office versions and differences between the Power software

•	 Installation guide across Excel versions

•	 Launching Power Query, Power Pivot, and Power BI

Technical requirements
It is imperative that you are able to locate an application from an operating system.

You will require intermediate knowledge of Microsoft Excel, including working with rows,
columns, worksheets, and workbooks, and have a basic understanding of formulae and
functions. It is also important that you know how to create a chart and modify its elements.

The GitHub URL for this chapter is https://github.com/PacktPublishing/
Learn-Power-Query/.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=cxKvtorqP1Q&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=2&t=4s.

Introducing Power Pivot
It is important that you understand the term data model (see https://
en.wikipedia.org/wiki/Data_modeling) before delving into what Power Pivot
is about. A data model is where two or more tables are linked together by a common field
or column. If you have already worked with Microsoft Access databases, then you will
have an understanding of table relationships. Linking tables from one or more sources to
a single data source is known as a data model:

https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://www.youtube.com/watch?v=cxKvtorqP1Q&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=2&t=4s
https://www.youtube.com/watch?v=cxKvtorqP1Q&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=2&t=4s
https://www.youtube.com/watch?v=cxKvtorqP1Q&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=2&t=4s
https://en.wikipedia.org/wiki/Data_modeling
https://en.wikipedia.org/wiki/Data_modeling

Introducing Power Pivot 5

Figure 1.2 – Representation of linked tables

Power Pivot is a part of the Power BI family; it is considered the brain of the family as
its purpose is to model, crunch, create calculations, and analyze. Using the analogy of
a vehicle, it is the engine in the data model that hosts all of the data. It can digest large
sets of data that reside in the multi-table data model it creates and can then be used
as a data source, for example, to create pivot tables. When working with data on a
worksheet in Excel, you can use Power Pivot to create a data model and subsequently
create a link between tables to create extensive relationships and build simple or
complex calculations all within the Excel environment. Power Pivot models data, sets
relationships, calculates additional columns, creates measures, sets KPIs, and can also
produce a cube.

Power Pivot Office versions and differences
We will first list the compatible Office versions and then discuss the differences
between them.

Power Pivot Office 2019 (Office 365), 2016, and 2013
A bit of good news is that previously, Power Pivot was only available with Office Pro Plus
2013/2016 versions, but recently Microsoft have made Power Pivot available in Office 365
Home, Office 365 Personal, Office 365 Business Essentials, Office 365 Business, Office 365
Business Premium. and Office 365 Enterprise E1.

Power Pivot is already installed on these systems by default, but sometimes, it needs to be
activated so that you can see it. For these versions, you can follow the steps provided in the
Activating my Power Query/Pivot again section.

6 Installation and Setup

Power Pivot Office 2010
The Power Pivot add-in was not bundled with Office 2010, but you can download this
for free from https://www.microsoft.com/en-us/download/details.
aspx?id=43348. Power Pivot for Office 2010 had two different versions, aptly named
version and version 2. They were written as plugins for the development of SQL Server
2012. When you go to the download site, it will state that you are downloading Microsoft®
SQL Server® 2012 SP2 PowerPivot for Microsoft Excel® 2010. Do not worry if you do
not have SQL Server; this is the version that you need for Excel 2010. You will notice that
the file size is relatively large when you download the add-in.

Introduction to Power BI
Power BI offers a cloud platform (Software as a Service – SaaS) experience that empowers
businesses to service themselves with all their intelligence needs. The huge benefit of this
is being able to handle millions of rows of data with ease – you can model and analyze
data by defining relationships. Its most wonderful feature is that it allows you to define a
formula once and then manipulate data using the same formula!

Power BI consists of Power Query, Power Pivot, and Power View and allows you to
present large, complex data in meaningful and interesting ways by creating reports and
dashboards. It is available in the cloud, which is where users upload and share with other
users, allowing natural language queries to be performed on data models. Its standalone
version is free of charge and is named Power BI for Desktop Applications. It includes all
three apps (Power Query, Power View, and Power Pivot). Power View allows you to create
interactive visualizations and consists of an interface where you drag-and-drop items to
create custom outputs from data.

Power BI versions and differences
We will first list the compatible versions for Windows and macOS and then discuss the
differences between the available versions.

Windows
There are three different versions of Power BI that you can download. Let's go over
them now.

Power BI Desktop/Free
Power BI Desktop, which is sometimes referred to as Power BI Free, is intended for small-
to medium-sized businesses. It allows you to connect to just over 70 data sources, publish
to the web, and export your data to Excel.

https://www.microsoft.com/en-us/download/details.aspx?id=43348
https://www.microsoft.com/en-us/download/details.aspx?id=43348

Introduction to Power BI 7

You can download the file from https://www.microsoft.com/en-us/
download/details.aspx?id=58494 or from the Microsoft Store:
https://aka.ms/pbidesktopstore.

Note
There are a couple of minimum system requirements that most computers will
already have, such as Windows 7 or newer, Internet Explorer 10 as a minimum,
1 GB RAM, .Net 4.5, and a CPU speed of at least 1 GHZ. But the one surprise
that you might have is that your standard screen size of 1,024 x 768 or 1,280
x 800 is actually too small for Power BI. It is recommended that you have a
resolution of at least 1,440 x 900 or 1,600 x 900 as certain controls display
beyond these resolutions.

Once again, you will be given the option to download the software for either a 32- or
64-bit system.

Please note that this is an application that you will need to install and that it might be
different to the version of Office that you have.

Download the relevant 32- or 64-bit file that you require for the installation of Power BI
Desktop. Run and install the downloaded file. When you get to the window that says that
you are about to install Power BI, have a look at the privacy statement to see what data
they collect while you are using Power BI. You have the option to opt out of this. Click on
the appropriate place in the window to learn how to do this.

Select the destination folder where you would like to install Power BI. Personally, I would
leave it as the default. One of the main reasons for this is that if you get stuck and need
help, another person is always going to give advice about the default location. If you have
chosen to install it in a different directory, this could become more difficult:

Figure 1.3 – Power BI Desktop application loading screen

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://aka.ms/pbidesktopstore

8 Installation and Setup

Once Power BI has loaded for the first time, you have the option of registering for their
newsletter, which provides you with tips and tricks on how to use it:

Figure 1.4 – Power BI Desktop application registration screen

Introduction to Power BI 9

You also have the option of signing in (use this link to sign up to Power BI for a free trial:
https://powerbi.microsoft.com/en-us/) or registering your Power BI
Desktop account:

Figure 1.5 – Power BI Desktop application sign-in screen

https://powerbi.microsoft.com/en-us/

10 Installation and Setup

Once you have completed this and agreed to everything, you will see the splash screen for
the first time, which you can choose not to see again by unticking the Show this screen on
startup option:

Figure 1.6 – Power BI Desktop application home screen

We personally found that the easier way to install Power BI Desktop is to download it
from the Windows Store (available from Windows 8 and above). The only problem with
this is that you have to use all the default settings. So, if you want to customize anything, I
would recommend the previous way of installing it.

Mac/Apple
Unfortunately, Power BI will only run on a Windows operating system. If you have a Mac,
you will not be able to install Power BI, but there are other options, such as Dual Boot
Camp, creating a local virtual machine (VM), or using a third-party service. You could
also try and run it with an application such as Turbo.net or Parallels.

However, you can download the Power BI App on your iPhone or iPad from the
App Store: https://apps.apple.com/us/app/microsoft-power-bi/
id929738808.

http://Turbo.net
https://apps.apple.com/us/app/microsoft-power-bi/id929738808
https://apps.apple.com/us/app/microsoft-power-bi/id929738808

Introduction to Power Query 11

Introduction to Power Query
Power Query is also part of the Power BI family and allows you to extract and load data
from a huge range of sources, which includes data from outside a file or database and from
web pages. It is considered a data grabber (or data shaper) as you feed data into Power
Pivot from Power Query. When working with Excel data, you can create a data model by
adding tables using data imported from various sources through Power Query, then use
the Add to Data Model checkbox on import. Then, you use Power Pivot to create links
(relationships) between tables. Both Power Query and Power Pivot allow you to import
data sources, but Power Query wins this battle since it provides more choices and has a
smaller file size.

You can pull data into existing Power Pivot or Excel tables and then shape the data before
you use the data again in Excel. Power Query is available in Excel and Power BI, and the
output of any transformed or shaped data can be sent to Excel or Power BI. With Power
Query, you can connect to and fetch data, set up conditions, merge and combine, add and
change data, and reshape and publish. Power Query uses its own language called M, which
we will discuss in detail in the Learning M section.

Features of Power Query
Before you can create dashboards in Excel, you will need to involve Power Query. An
Excel worksheet consists of 1,048,576 rows, and if you try to import more than this
maximum from a data source, Excel will probably crash or end up only importing the
limit, which would seriously affect the performance of the workbook. So, to solve this, you
use Power Query. This is because it allows you to connect straight to the data source. This
means that raw data is not stored directly in the Excel file; it still belongs to the source file.

Power Query stops tasks from having to be repeated manually over and over; for instance,
repetitive tasks or macros in workbooks or worksheets. Power Query allows the creation
of named queries in which you add a list of steps to perform on a set of data, without
requiring coding language experts. This greatly reduces company costs, time, and the need
for expert knowledge or outsourced programming experts.

Another cool feature of Power Query is the ability to unpivot data, which allows you to
create several Pivot table reports by reversing data into table format. It also allows you
to consolidate data from different tables into a single pivot table report. This is especially
useful if you have data in separate Excel tables from different divisions of your business.

12 Installation and Setup

Another reason why Power Query is so useful is because it allows you to import text files
residing in the same folder. Power Query, without effort, quickly imports them into one
file in Excel. Alternatively, it allows you to just connect to them, making the creation of
Pivot table reports simple and time-efficient!

Power Query is a free add-in for earlier versions of Excel and is included in later versions.
Throughout the remaining topics in this chapter, you will learn about which versions
of Office support Power Query and where to find Power Query for different versions or
releases of Microsoft Excel.

Power Query Office versions and differences
We will first list the compatible versions for Windows and macOS and then discuss the
differences between the available versions.

Windows/Android
The following Office versions for Windows are supported by Power Query:

•	 Microsoft Office 2019, 2016, and 2013: All versions.

•	 Microsoft Office 2010 Professional Plus with Software Assurance.

•	 Power Query Premium: All Power Query features available for Professional Plus,
Office 365 ProPlus, and Excel 2013 Standalone.

•	 Power Query Public: Available for all other Office 2013 Desktop SKUs. Includes
all Power Query features, except Corporate Power BI Data Catalog, Azure-based
data sources, Active Directory, HDFS, SharePoint Lists, Oracle, DB2, MySQL,
PostgreSQL, Sybase, Teradata, Exchange, Dynamics CRM, SAP BusinessObjects,
and Salesforce.

•	 Get & Transform (Power Query) is currently not supported by Android, iOS,
and Online.

Introduction to Power Query 13

Mac
The supported versions for macOS are as follows:

•	 Excel 2011 and Excel 2016 for Mac: Get & Transform (Power Query) is
not supported.

•	 Excel for Office 365 for Mac: If you are an Office 365 subscriber and you
have signed up for the Windows Insider program, you can refresh existing
Power Query queries on your Mac.

Differences between Office 2019 (Office 365) and Office 2016
versions
If you have Office 2019 or Office 2016, you already have Power Query and Power Pivot
installed. It has been renamed and is now on the Data tab of the ribbon in the Get &
Transform section:

Figure 1.7 – Office 2019 window

14 Installation and Setup

Here is the Office 2016 window:

:

Figure 1.8 – Office 2016 window

As you can see, there are slight differences between the Office 2016 and 2019 versions, but
they both work in a similar manner. If you have Office 2016, however, it is possible your
ribbon might look different to the one shown previously; it might look more similar to the
one shown in the following screenshot:

Figure 1.9 – Alternative Office 2016 window

This is because there are different builds of Excel 2016. The different builds include the
MSI (Windows Installer) version, the Office 365 subscription, and the ProPlus version.
Each build is slightly different and as a result, you might have different icons.

Introduction to Power Query 15

Installing Power Query in Office 2013 and 2010
You will need to download the Power Query add-in from https://www.microsoft.
com/en-us/download/details.aspx?id=39379.

When you click on the Download button on that page, you will be asked if you would like
to download the 32-bit or 64-bit system for Office. If you know which version of Office
you have, you can download the relevant file.

Note:
The main difference between the two different versions is that the 32-bit
version works well for up to about 2 million rows of data, give or take. The
64-bit system can work with more than 20 times that amount without any
problem. Something else to remember is that if you have created a Power Pivot
workbook for 5 million rows and you then give access to it to another person
that has a 32-bit system, the workbook will open but they will not be able to
interact with the Pivot table.

Once you have determined which system you have, download the relevant file
from Microsoft. You can use these instructions to determine the system you have:
https://support.microsoft.com/en-gb/help/13443/windows-which-
version-am-i-running.

To install the Power Query add-in, follow these steps:

1.	 First, make sure that Excel is closed before you click on the downloaded file to run
the installation. Agree to the terms and conditions and then click on Next until you
have completed the setup.

Tip:
You must have at least Internet Explorer 9 to install the add-in. If you have a
previous version of Internet Explorer, you will have to upgrade your Internet
Explorer and then install the Power Query add-in.

2.	 Once installation is complete, open Excel 2010 or 2013. You will now see the new
Power Query ribbon, which looks as follows:

Figure 1.10 – Power Query ribbon

https://www.microsoft.com/en-us/download/details.aspx?id=39379
https://www.microsoft.com/en-us/download/details.aspx?id=39379
https://support.microsoft.com/en-gb/help/13443/windows-which-version-am-i-running
https://support.microsoft.com/en-gb/help/13443/windows-which-version-am-i-running

16 Installation and Setup

Activating my Power Query/Pivot again
Every now and again, you might notice that the Power Query or Power Pivot tab
disappears. This is due to the software COM add-in failing to load. If this happens, you
need to reselect the add-in from the COMM Add-ins menu. Although there are different
ways to get to this menu, this is the process we find the easiest:

Note:
This process is applicable to both Power Query and Power Pivot. For
illustration purposes, we are only showing the steps using Power Query.

1.	 Launch Excel, click on File, and then click on Options:

Figure 1.11 – Excel options

Introduction to Power Query 17

2.	 Click on Add-ins on the left-hand side menu and select COM Add-ins from the
Manage drop-down list box:

Figure 1.12 – Excel Add-ins

3.	 This will open the COM Add-ins window, where you can select the Power Query
checkbox if it is not selected:

Figure 1.13 – Excel COM Add-Ins options

18 Installation and Setup

Launching Power Query, Power Pivot, and Power BI
In this section, you will successfully locate and launch the Power Query Editor from
within Microsoft Excel and Power BI. We will be using Microsoft Office 2019 for
this example.

Launching Power Query within Excel
Follow these steps to learn how to launch Power Query within Excel:

1.	 Open Microsoft Excel 2019.

2.	 Click on the Data tab along the ribbon.

3.	 Click on Get Data (this action accesses Power Query):

Figure 1.14 – Excel Data tab

4.	 Choose what data to pull into Power Query from the list of data sources.

5.	 The Launch Power Query Editor… option shown in the drop-down list is used to
enable and show data transformations.

Accessing Power Query from Power BI
Follow these steps to learn how to access Power Query from Power BI:

1.	 Locate Power Query BI desktop on your computer. If you cannot see an icon on
your desktop, use the search facility to locate the application and launch it:

Introduction to Power Query 19

Figure 1.15 – Power BI Desktop

2.	 Power Query will populate and show the launch screen:

Figure 1.16 – Power BI Desktop startup

20 Installation and Setup

3.	 Use the launch screen to access the Get Data option so that you can open Power Query
or close the launch screen using the X icon at the top right of the launch screen:

Figure 1.17 – Power BI Desktop

4.	 Click on Get Data, which is located on the Home tab (this activates Power Query
from within Power BI).

5.	 Choose a data source to start the Power Query experience.

Summary
In this chapter, you were introduced to three very powerful tools that allow us to create
data models, transform and shape data, and create stunning dashboard visualizations. You
now have knowledge of what Power BI, Power Query, and Power Pivot can offer and have
learned how to set up and install these apps within the Microsoft Office Excel platform,
as well as for different desktop versions and releases. You have also learned about their
differences and functionality across updates. To end this chapter, you learned how to
locate and launch Power Query using the Get Data method.

Chapter 2, Power Pivot Basics, Inadequacies, and Data Management, focuses on the
shortcomings of Power Pivot and why Power Query is the better tool to use when
handling complex data in order to retrieve, extract, and reshape data. By completing this
chapter, you will gain an understanding of the importance of data management and data
analysis in business. We will look at examples in both Power Pivot and Power Query. You
will also learn how to convert worksheet data into tables, ready for query input through
Power Query.

2
Power Pivot Basics,

Inadequacies, and
Data Management

Power Query is now integrated into all the data analysis and business intelligence tools
available from Microsoft, including Excel, Analysis Services, and Power BI. This allows
users to discover, combine, and refine their data from various sources. In this chapter, you
will learn how to install and access these tools.

In this chapter, we're going to cover the following main topics:

•	 Creating a pivot table

•	 Creating a Power Pivot

•	 Creating data tables in Excel

•	 Creating relationships between tables

•	 Power Query to the rescue

•	 Shortcomings of Power Pivot

22 Power Pivot Basics, Inadequacies, and Data Management

Technical requirements
You will need an internet connection to download the relevant files from GitHub. Also,
the code files for this chapter can be found at:

https://github.com/PacktPublishing/Learn-Power-Query

This chapter assumes that you already know how to write basic formulae in Excel.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=5TuXxIuMehY&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=3&t=0s.

Businesses have always used data for analysis and then, based on the results, make
decisions about the future of their business. Many decisions today are almost instant
decisions. People do not want to wait for the information to be analyzed; they want
quick responses and turnaround times. For years, businesses used analytics to uncover the
basic trends and insights, even before big data was a phrase. Of course, today, businesses
need to be able to analyze huge amounts of data, which allows them to be more agile and
work faster.

Without going into too much detail about why analytics plays a part in business and why
businesses need data analytics, we will cover a few points that convey the importance of
data analytics and how Power Pivot, Query, and more play a role in all of this.

One of the reasons data analysis has become so important in business is because it
improves efficiency. Data is normally collected and analyzed internally and may cover
things from employees to the business' performance. Through the use of data mining
(huge datasets that are collected and analyzed) and collecting data from a huge number
of people, this often becomes invaluable for marketing and advertising businesses. With
regard to Power Query, being able to load and transform the data almost instantly results
in a cost reduction, which, in turn, leads to faster and better decision-making, allowing
the business to meet deliverables efficiently.

Now, let's start with the first topic of this chapter, which will be the basis for the rest of
the topics.

https://github.com/PacktPublishing/Learn-Power-Query
https://www.youtube.com/watch?v=5TuXxIuMehY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=3&t=0s
https://www.youtube.com/watch?v=5TuXxIuMehY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=3&t=0s
https://www.youtube.com/watch?v=5TuXxIuMehY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=3&t=0s

Creating a pivot table 23

Creating a pivot table
Most people have used a pivot table at some point in their work lives to summarize large
amounts of data quickly and easily. As a quick example, I have launched Microsoft Excel
and opened the PowerQuery.xlsx file, which can be downloaded from GitHub:

Figure 2.1 – Data for a pivot table

As you can see, we have a table with some sales data that includes salespeople from different
regions and the products that they have sold. Let's use this data to make a pivot table:

1.	 Select/highlight the entire table. After highlighting the table, click on the Insert tab
on the ribbon, and then click on Pivot Table.

Tip
You can also highlight the table after you have clicked on Pivot Table. Just click
on the arrow button at the end of the Table/Range field and click on it again
after your selection is complete.

24 Power Pivot Basics, Inadequacies, and Data Management

2.	 The range is automatically filled in for you. Here, you can choose to have this
on a new worksheet or use the existing worksheet. I have opted for the existing
worksheet so that I can see the data at the same time:

Figure 2.2 – Pivot table fields
Once you have selected where you would like the pivot table to be placed, click
on OK.

3.	 You can then select which information you would like to include in your pivot table.
I have used a monthly filter, with the region in the columns and the name of the
salesmen in the rows. I have also decided to use the sum of the net sales as my value,
as shown here:

Creating a pivot table 25

Figure 2.3 – Data selection in a pivot table

4.	 If we want to know who the top salesman was for a particular time frame or region,
we can right-click on Grand Total and select Sort Largest to Smallest, as follows:

Figure 2.4 – Sorting the data in the pivot table

26 Power Pivot Basics, Inadequacies, and Data Management

In the space of 30 seconds, we have created a basic pivot table that has summarized 1,400
rows of data with an interactive view that is easy to modify. One of the great things about
this is that you do not need to learn any formulae when you want to change one of the
criteria; for example, we won't have to do anything else if we want to know who the top
salesman was for North, as it automatically refreshes and keeps the same order, from
largest to smallest:

Figure 2.5 – Auto-sorting the data by making a change to the filter in the pivot table

Although pivot tables are easy to create and you can always change what is displayed, I
personally like to add slicers to them. This does exactly the same thing as selecting the
pivot table's fields, but to me, it adds an element that is also great to look at.

One of the reasons I am showing this to you is because this feature is automated in Power
Query and I would like you to see how it is otherwise done manually. Of course, the slicers
are highly interactive and allow anyone to manipulate the data very quickly:

1.	 First, you must have the pivot table selected. Then, click on the Analyze tab on the
ribbon and select Insert Slicer, as shown here:

Figure 2.6 – Pivot table Insert Slicer menu

Creating a pivot table 27

2.	 You then select the slicers that you would like to include, and then click on OK:

Figure 2.7 – Pivot table slicer options

3.	 By clicking on the top of the slicer window, you can drag the slicers into any
position on your sheet, as shown here:

Figure 2.8 – Pivot table slicer position

28 Power Pivot Basics, Inadequacies, and Data Management

The slicers allow you to filter data more interactively than just using simple filters
and sorting.

Now that we have completed our pivot table, let's say we realize that we have forgotten to
add categories that are located on another sheet for each of the products. Let's add these
categories so that we can see that data too in our analysis:

Figure 2.9 – Additional Category data

To do so, we would need to insert a column in our original table and create the following
VLOOKUP to pull the data:

=VLOOKUP(E3, Categories!B$3:C$7,2,FALSE)

This results in the following output:

Figure 2.10 – Adding data using VLOOKUP

We will need to extend the table range by selecting Change Data Source from the
Analyze tab and then selecting the new table or range:

Creating a pivot table 29

Figure 2.11 – Change Data Source option
Once we refresh the pivot table, it will display the new data. Although this works
well with our example, if there are a considerable number of changes being made at
once, it might be easier to create a new pivot table:

Figure 2.12 – Pivot table VLOOKUP

30 Power Pivot Basics, Inadequacies, and Data Management

Once completed, this looks very impressive. However, this can be time-consuming,
especially as you have to do the same thing every month with new data with different file
extensions and columns.

Note that there are additional problems with pivot tables. The biggest is that Excel only
handles just over 1 million rows that you can use, and although you might be thinking,
who is ever going to use more than that?, when it comes to large datasets, it is common
practice to have more than 5 million rows of data that you would like to analyze.

Creating a Power Pivot
Let's create a basic Power Pivot to compare how this is different from a pivot table. While
doing this, we will look at some of the advantages and limitations of Power Pivot.

Note
Before we get started, I would like to say that when we look at the whole range
of Power products (Power View, Power BI Desktop, Power Map, Power BI, and
Power Query), Power Pivot is the DAX engine and is, in essence, the brain that
drives all of the reporting, visualization, and analysis.

There are two parts to creating a Power Pivot - first, we will have to create a table in Excel
and then add it to the data model.

Creating a table in Excel
I have opened an Excel document (shown in the following screenshot) that contains the
same information as we used previously. However, instead of using 1,400 rows of data, I
am going to extend that to 1,048,576 rows, which just happens to be the last row on an
Excel spreadsheet:

Creating a pivot table 31

Figure 2.13 – Data for Power Pivot – start of the sheet

The following screenshot shows the last row in this table, which is 1,048,576:

Figure 2.14 – Data for Power Pivot – end of the sheet

32 Power Pivot Basics, Inadequacies, and Data Management

Here are the steps to convert the data:

1.	 First, we need to convert the preceding data into a table.

Note
Data and table are database terminology, both of which refer to a container
for information. Each table contains information about a single thing, for
example, a product or the sales representative selling the product, which is
organized into rows and columns. Basically, a table is an object that allows us to
create relationships to other objects in other tables. In a database, we view the
contents of a table in a form called a datasheet. Although it looks like rows and
columns, in a database, they are called records and fields.

There are two different ways in which you can do this. The first is to click anywhere
inside the data range, click on the Insert tab on the ribbon, and then click on Table.
The second option is to use the Ctrl + T keyboard shortcut:

Figure 2.15 – Creating a table

2.	 You can either click on the OK button or press the Enter key to confirm this:

Figure 2.16 – Creating a table

Creating a pivot table 33

Note
It is always a good idea to name your tables, especially when you have a few of
them; this will make them easier for you to identify. Note that there are a few
rules to adhere to when naming a table. The table name has to start with a letter
or an underscore (_). You also cannot have any spaces in the name, and you
obviously cannot give the table a name that already exists.

3.	 I am going to keep to database modeling and start my table name with a fact
table, before my fact or transaction table (please read the beginning of Chapter 4,
Connecting to Various Data Sources Using Get & Transform, for a full explanation of
fact and dimension tables):

Figure 2.17 – Creating a table

4.	 Select the next range, which is the SalesRep data, and using either of the methods
mentioned previously, convert this into a table. If your table has headings, do not
forget to tick the My table has Headings box. I am going to rename this table with a
prefix of D for dimension and call it SalesRep.

5.	 Repeat this procedure with the last lot of product data to convert it into a table.
In keeping with the current format, I'll call it dProduct.

We have now converted all the pertinent data into tables. We can now add the tables to the
data model.

34 Power Pivot Basics, Inadequacies, and Data Management

Adding tables to the data model
Data modeling is a framework that shows how the data is connected within a database
and how it is stored, processed, and updated inside the system. Although the relational
model is the most commonly used, there are others available, such as the hierarchical and
network models. This step should not be overlooked or taken lightly as this component
provides the structure that will support the analytical needs of the decision-makers. Let's
get started:

1.	 Click on the Power Pivot tab on the ribbon and select Add to Data Model:

Figure 2.18 – Add to Data Model option
This may take a little while if the dataset is large. It is important to realize that the
data model is linked to the data in the table we created. This means that if we change
any information in our Excel table, it will automatically update our data model.

2.	 After clicking on Add to Data Model, the Manage Data Model window will open.
Here, there are three new tabs at the top, namely Home, Design, and Advanced:

Figure 2.19 – Manage Data Model window

3.	 Go back to Excel, either by using Ctrl + Tab or clicking on the Switch to Workbook
icon located on the top-left of the window. Add the two other tables to the data
model in the same way as we added the first:

Creating a pivot table 35

Figure 2.20 – All three tables in the data model window

4.	 When we look at RegionSales, you might notice that the date does not fit into the
column. So, we will resize this in the same way we would resize a column in Excel.

5.	 Once the column has been resized, we will change the format of the column as we
do not want the time and date format in the same column. Click on Format from
the Home tab, and then select the fourth format type (DD/MM/YYYY) from the
top of the drop-down list, which will then display the date format without the time:

Figure 2.21 – Changing the date format in the data model

36 Power Pivot Basics, Inadequacies, and Data Management

6.	 Now, let's change the format of Price by clicking on the dProduct tab, selecting the
Price column, and then changing it to Currency:

Figure 2.22 – Changing the format of the Price column to Currency

7.	 We can also sort any of the columns in the table by selecting the Sort Oldest to
Newest icon, which will make the data easier to understand:

Creating a pivot table 37

Figure 2.23 – Sorting the table in ascending or descending order

We can also change the Discount field to a percentage in the fRegionSales tab, but I have
left mine as is.

Creating relationships between tables
Next, we will need to create our relationships. There are a number of reasons why we use
relationships between tables. Two reasons for doing this are to establish a connection
between tables that are logically related to each other and to minimize redundant data.
Let's get started:

1.	 On the Home tab, click on the Diagram View icon:

Figure 2.24 – Diagram View in the data model

38 Power Pivot Basics, Inadequacies, and Data Management

2.	 To create a relationship, you will need to drag and drop Region in the dSalesRep
table to Region in the RegionSales table. Doing so will link the two tables through
a matching field.

There are different relationships that you can create in Power Pivot. The one we
have created is a one-to-many relationship. In the dSalesRep table, the Region
column has a unique list in the lookup table for each SalesRep in each region.
The RegionSales table has many regions in this table since there are many sales.
You will see a link from the one table to the other table.

3.	 From the RegionSales table, create a relationship with Product with the dProduct
table in the same way:

Figure 2.25 – Creating relationships between tables

It is sometimes difficult to see which columns are linked together when you are looking
at the Diagram View screen. Looking at the preceding table, it looks like a category in the
dProduct table is linked to the Region column in the RegionSales table. If you click on
the actual link, this becomes much clearer.

If you would like to change or view the relationship, you can right-click on the
relationship and then click Edit Relationship.... This will bring up a window that
displays the tables and columns and how they relate to each other:

Figure 2.26 – Edit Relationship window

Power Query to the rescue 39

If you want to change the relationship, it is as easy as clicking on another column in the
relevant table:

Figure 2.27 – Relationships between tables

Before going back to the Data View screen, we will need to save the relationships that you
have created; otherwise, it will not link the tables together. There are a number of different
ways in which you can save these relationships. You can either click on the Save icon; click
on the File tab, then Save; or use the Ctrl + S keyboard shortcut.

Power Query to the rescue
Now that we have created the relationships between our different tables, we will link these
tables together. We will need to create a new field called NetIncome in our fRegionSales
table. To keep the integrity of the data model, we cannot use Power Pivot to edit the
existing data. However, we can create a new calculated column based on our existing data
in the table.

Creating a calculated column
Click to select the fRegionSales tab. We are now going to add a column and create a
calculated column. Double-click on the next available column on the right that states Add
Column and add Net Income. Then, press Enter:

Figure 2.28 – Creating a new column name

40 Power Pivot Basics, Inadequacies, and Data Management

Looking at the preceding table, we may want to multiply the units and the discount, along
with the unit price, which is in a different table. Normally, we would do a VLOOKUP in
Excel to fetch this data. However, VLOOKUP does not exist in Power Pivot. Fortunately,
there is another function that we can use called related. Let's get started:

1.	 Click in the first cell in the Net Income column and type an equals (=) sign, in the
same way that you would for create a formula in Excel, and then type related. When
you open the bracket, Power Pivot automatically populates the different linked
tables (this is why we created the relationships between the tables):

Figure 2.29 – Creating a related formula

2.	 At this point, there are two ways in which we can compete the formula. The easiest
way is to click on dProduct[Price], which was offered to us automatically. The
second way is to click on the dProduct tab, and then select the Price column. I prefer
this method for no other reason than to see that I have selected the correct column:

Figure 2.30 – Creating the related formula with manual selection

Power Query to the rescue 41

3.	 Now, close the brackets and press Enter. Notice that all the unit prices are now
displayed in the column:

Figure 2.31 – Net Income column is updated with the product's price
Of course, if you knew all of this, you could have simply typed in
=related(dProduct[Price]).

Note
There are a number of things I would like to mention before continuing. In
Power Pivot, this is the convention when we write formulas. We will always
have our table name and our field in square brackets.

In Excel, the cells and tables have a structured reference, for example F6, while
Power Pivot is a bit more like an Access Database, which uses table names and
field names.

We will discuss this in more depth later in this book, but you will need to
understand row context. When we created a relationship between the different
tables, PowerPivot knew that there was a relationship in the product column.
In our first row, we have Game7. PowerPivot then looks in the dProduct table
and finds the price for Game7 and inserts it in that row. It then goes down to
the second row and do exactly the same thing. Row context is something that
we will use in calculated columns.

Lastly, when we look at the formula for each of the different rows in our table,
you will notice that every row has the same formula. In Excel, you would
normally use a relative cell reference or something else in your formula, but
because of the row context, every formula is the same.

Now that we have obtained the product's price from the dProduct table, we can
complete the rest of the formula to get the net income.

42 Power Pivot Basics, Inadequacies, and Data Management

4.	 Click in the formula bar to edit the formula and type *(1- . Then, click on
Discount and close the bracket. Now, we only need to multiply the number of units:
type in *(, select Units, and close your brackets.

The completed formula will look as follows:
=related(dProduct[Price])*(1-fRegionSales[Discount])*(fReg
ionSales[Units])

This results in the following output:

Figure 2.32 – The completed Product Price formula

5.	 When looking at the final number, we may wish to convert this into currency.
Click on the Currency icon and select the appropriate currency.

Now that we have finished creating a calculated column, I would like to look at
creating a calculated field, which will allow us to use a formula to add up the total
region sales:

Note
A calculated field is sometimes known as measures or explicit formulas.

Power Query to the rescue 43

Figure 2.33 – Difference between a calculated column and field

Next, we will learn how to create a calculated field.

44 Power Pivot Basics, Inadequacies, and Data Management

Creating a calculated field
There are two ways to create a calculated field. First, in Power Pivot, you can click in
the measured grid below your table. Let's say we want to work out the total net income.
Although this is possible to do in a pivot table, it would be more beneficial to create the
explicit measure in Power Pivot. One of the most important reasons for doing this is that
once you create the formula, you can use it over again and you can also use it in other
DAX formulae. Let's take a look:

1.	 We start off by creating the name of the calculated field. I am going to type in
Total Net Income:. Although you start typing in the measured grid, it will
get typed into the formula bar. We will now add =sum(fRegionSales[Net
Income]).

Note
If you have used and coded in Access, you will know that you start by adding
your calculated field name followed by a colon before starting your formula.

2.	 After pressing Enter and expanding the column, you will notice that the Total field
is not formatted correctly:

Figure 2.34 – Incorrectly formatted calculated field

3.	 Simply click on the Currency symbol from the Home tab ribbon to correct this.

The second way to create a calculated field is to go back to Excel and click on
Measures in the PowerPivot ribbon:

Power Query to the rescue 45

Figure 2.35 – Second way to create a calculated field
From here, you can create a new calculated field, but you can also edit existing ones
like the one we have created. In the preceding screenshot, you will see that it has
saved our number as Currency. Personally, I think the first way is easier as you
can click and see the relevant information, as opposed to typing everything in a
straight formula.

We have looked at a number of different things separately, such as creating relationships,
creating calculated columns and fields, and writing some M formulae. In the next section,
we will look at how all of these features can be used together to create a Power PivotTable
and some of the shortcomings that Power Pivot has.

46 Power Pivot Basics, Inadequacies, and Data Management

Creating a Power Pivot table
All the sections in this chapter have been necessary for us to get the data into a format
that we could use to create our Power Pivot table. From the initial Excel data, which
contains 1,048,576 rows that we imported as a table and added to our Data Model, we
changed the data types and created the necessary relationships. We then created calculated
columns that worked out the product price and our net income and calculated fields that
worked out the region sales. We were exposed to the M language and its structure when
writing the =related(dProduct[Price]) formula.

Now that we have all set all these things up, we can now use this information to create
a Power PivotTable. If you have closed the workbook that you created previously in this
chapter, you will need to open it before continuing.

To create a PivotTable from Power Pivot, click on PivotTable on the Home tab and then
select New Worksheet. The first thing that you should notice is that all the linked tables
that we created earlier have been imported, so you are able to use information from any of
these tables:

Figure 2.36 – PivotTable Fields with linked tables

I have created the following PivotTable with specific people from South Region, a few
products, and Total Net Income:

Shortcomings of Power Pivot 47

Figure 2.37 – Completed PivotTable

Note
Filter context is used when something or, more specifically, a measure is
calculated. In our example, Sum of Total Net Income is filtered by the region
that we have selected.

After all the work we have put in, creating a Power PivotTable was simple.

Shortcomings of Power Pivot
There are a couple of limitations of Power Pivot-driven pivot tables that you need to
recognize so that you can work out if you can use them or the internal data model.

Problem 1 – selecting multiple items
The first issue is with trying to group dates into quarters or years. You could Select Multiple
Items and then select the relevant dates that you wanted, but this is very time-consuming.
Also, it is likely that human error could occur, as you might miss-click on one of them:

Figure 2.38 – Date problem with Power Pivot

48 Power Pivot Basics, Inadequacies, and Data Management

Problem 2 – Power Pivot preview
The second problem is that in a standard pivot table, you can double-click on a cell and
then see all the rows that make up that amount in that cell. In Power Pivot tables, you can
only see the first 1,000 rows:

Figure 2.39 – First 1,000 rows problem with Power Pivot

Problem 3 – calculated fields
The third problem that we saw in our example is that you cannot create calculated fields
and items, which you can do in a regular pivot table.

Problem 4 – Microsoft Office versions
Lastly, Power Pivot-driven tables can only be refreshed or configured in Excel 2013 or
newer. If the pivot table that you would like to create contains less than 1 million rows and
you need to do one of the things that are mentioned here, then you are better off using the
standard pivot table than trying to use the internal data model.

At the beginning of this chapter, you look at a comparison between using a VLOOKUP
and slicers in terms of how Power Pivot and Query do the same thing. Hopefully, you
should see how Power Pivot and Power Query work together in moving data from Excel
to a more appropriate database data format.

Summary 49

Summary
Although we can create a pivot table relatively quickly in Excel, there are a few drawbacks
that Power Query can solve. One of the biggest problems with Excel is that it can only
have just over a million rows of data. The reality of this is that once you start going over a
few hundred thousand, Excel becomes a bit sluggish.

Power Pivot allows us to work with huge datasets, which creates smaller and faster
workbooks than standard pivot tables. One of the ways Power Pivot makes this more
effective is by loading the data into the data model of Excel and not into a worksheet.
We are then able to create relationships between the different tables and we do not have
to worry about using VLOOKUP to create one table with everything in it.

By creating pivot tables based on this model, we can analyze multiple tables of data more
easily and efficiently.

In the next chapter, we will introduce the Power Query interface, create a basic Power
Query, and discover how to send data back to Excel from within Power Query.

3
Introduction to

the Power Query
Interface

In this chapter, you will be introduced to the Power Query interface and take a journey
through its tabs, ribbons, and interface layout. During this tour, you will learn some
nifty tips and tricks and best practices for transforming data. You will also gain the skills
to create a basic power query and learn how to use the View tab to set data profiling
options, as well as discover different methods on how to send reshaped data back to an
Excel workbook.

The following topics are covered in this chapter:

•	 The Power Query window and its elements

•	 Creating a basic Power Query

•	 Discovering the Load To… options

•	 Data profiling tips

52 Introduction to the Power Query Interface

Technical requirements
Before working through this topic, you should have a solid understanding of the use of
Power Query, be proficient at locating and launching Power Query through the Excel
2019 environment and saving a presentation, have a good knowledge of file management
(files, folders, and file types), be familiar with the different ribbon options within Excel
2019, be able to navigate with ease around the environment, and be skilled at inserting
and formatting graphic elements. It is also preferred for you do have a little database
knowledge as some introductory terminology is used throughout this chapter.

The examples used in this chapter can be accessed from https://github.com/
PacktPublishing/Learn-Power-Query/.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=yXC8-jqgqXY&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=4&t=1s.

The Power Query window and its elements
This section will introduce you to the Power Query window. You will become familiar
with the elements in it, learning how to understand how its different parts function.

As mentioned in previous chapters, Power Query is launched via the Get & Transform
group, located in the Data tab of the Excel ribbon. Once you have clicked on Get Data,
select the Launch Power Query Editor option from the drop-down list. The Power Query
editor will load as a separate window over the Excel 2019 interface:

Figure 3.1 – The Power Query window without any data loaded

https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://www.youtube.com/watch?v=yXC8-jqgqXY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=4&t=1s
https://www.youtube.com/watch?v=yXC8-jqgqXY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=4&t=1s
https://www.youtube.com/watch?v=yXC8-jqgqXY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=4&t=1s

The Power Query window and its elements 53

Note
The various methods of accessing Power Query have already been described in
previous chapters.

We will cover the following Power Query elements in the upcoming sections:

•	 The main ribbon and tabs

•	 The navigation pane (the Queries list)

•	 Data table preview

•	 The Query Settings pane

Along with these elements, we will cover the following feature elements in Power Query:

•	 Working with APPLIED STEPS

•	 Investigating the View settings

•	 Using Advanced Editor

After covering these topics, we will be ready to create our first basic Power Query. So, let's
get started!

The main ribbon and tabs
The main ribbon contains access to all the features within Power Query that allow you to
mechanize processes to clean, transform, and shape data from different sources.

Any time an icon is used from the main ribbon, the step that is carried out on the data
loaded within Power Query is stored and made available for editing or deleting at any
point. This is especially useful when preparing data in Power Query to be ready for
analysis or summary using other tools such as PivotTables or dashboard reporting.

Moving on, there are only five tabs in Power Query that guide you in accessing the
program functions. They are File, Home, Transform, Add Column, and View:

Figure 3.2 – Tabs

Familiarize yourself with the content of each of the tabs, ensuring you know exactly where
to go to perform a certain action in the program.

54 Introduction to the Power Query Interface

The navigation pane or the Queries list
This pane displays the queries that you have created. Any new data sources or queries that
are added to be created in Power Query will be displayed in this pane:

Figure 3.3 – The Queries list pane

Let's see how we can add/create a new query here from the Power Query window.

Adding a new query using the navigation pane
Perform the following steps to add a new query using the navigation pane:

1.	 Right-click with your mouse pointer on the background of the Queries list (from
the navigation pane).

2.	 Click on the New Query option from the shortcut menu provided.
3.	 Choose a data source from the list provided, and if relevant, choose a further option

to create the new query:

Figure 3.4 – Adding a new query using the navigation pane

The Power Query window and its elements 55

You may want to edit or modify an existing query. The next section covers that.

Editing with the query options
There are also options to edit queries by right-clicking on a query name in the navigation
pane. A shortcut menu will appear, where you can find options for renaming, deleting,
duplicating, sorting, or even creating a function, as well as accessing Advanced Editor:

Figure 3.5 – The query right-click options

If you are working with a number of queries and some relate to the same topic,
department, or region, you may want to group them together. Let's see how.

Grouping queries
This is simply a way of organizing your queries in the navigation pane. Creating a
new group can be achieved either by right-clicking on the empty navigation pane
background and selecting New Group from the shortcut menu, or by selecting the
queries first, as follows:

1.	 Select the queries in the navigation pane that you wish to group by pressing Ctrl and
clicking on each one.

56 Introduction to the Power Query Interface

2.	 Right-click on the selected queries:

Figure 3.6 – Right-click to create a new group

3.	 Select New Group.

4.	 Name the group SalesData in the placeholder provided, and enter a description,
if appropriate:

Figure 3.7 – Naming a group

Tip
I find adding a description especially useful as when you load the data back
to Excel, you can then see the description in the Queries & Connections pane
for reference.

5.	 Click on OK to save the group.

The Power Query window and its elements 57

6.	 The group is displayed in the navigation pane along with the main group name,
SalesData, at the top. The four tables are listed as follows:

Figure 3.8 – The new group result

7.	 The group can be expanded or collapsed using the arrow to the left of the yellow
group folder icon.

Data table preview
This is the largest window within Power Query and shows a preview of a selected query
from the Queries list pane, as well as the state of the query data according to the applied
steps shown on the right. It is the view you refer to when rearranging and shaping data to
arrive at your data analysis requirements.

At the top of the preview pane, you will see the column headers, and down the left-hand
side, you will see the row numbers. Each column header also displays the data type to the
left of the column name (refer to figure 3.12 for an example view).

In the following example, the column headers are labeled Region, Product, Date, and
Sales. When you place the mouse pointer over the data type, a square border appears
around the data type icon:

Figure 3.9 – The column data types

58 Introduction to the Power Query Interface

Clicking on this icon will populate a drop-down list of data type options relating to the
data in the column you currently have selected. Note that the Using Locale… option at
the bottom of the drop-down list will allow you to choose a convention from a different
location, such as English (United Kingdom):

Figure 3.10 – The data type drop-down list

Another method to change the data type is to visit the Data Type: drop-down list icon,
located in the Home tab of the Transform group. Remember to select the column you
wish to alter first:

Figure 3.11 – The Data Type: tab option

The Power Query window and its elements 59

Navigating and selecting columns, rows, and the data table works exactly the same as
you would in Excel 2019. You can use the Ctrl + A keys to select the entire table in the
preview window.

The Query Settings pane
The Query Settings pane is located at the right in the Power Query window. It is separated
into two sections, namely Properties and APPLIED STEPS. If you do not see the Query
Settings pane toward the right in the preview pane, then you will need to activate it by
clicking on the View tab and then selecting the Query Settings icon:

Figure 3.12 – Query Settings

Next, we will see how to change this property.

Changing the query properties
When you open data in Power Query, the Properties pane will reflect a table name,
which you can rename to suit the nature of your query. When you close and load the
transformation back to the Excel table, the new table will take on the same name as the
source table from Power Query:

Figure 3.13 – Table properties

60 Introduction to the Power Query Interface

The table name is used in the Power Query M code when referencing it.

Working with APPLIED STEPS
APPLIED STEPS is where you will notice all the recorded steps undertaken on the data
within the query. These steps are added and labeled whenever you use a feature from the
ribbon in the sequence of an application. Steps can include removing a column, making
a data connection, or changing the header row; all of these steps are part of shaping data,
which constitutes the creation of queries.

Steps can be removed by pressing the Ctrl + Z undo keyboard shortcut or by clicking on
the x icon to the left of the recorded step to remove the last step. When placing the mouse
pointer over x to the left of the chosen step, the x icon will turn red:

Figure 3.14 – Removing a query step

Each step is recorded by a command; these commands are called M queries, which is
the language underlying the commands listed behind the ribbon icons used to perform
these steps.

Deleting multiple steps
Instead of deleting steps one after the other, which is time-consuming, you can select one
point in the APPLIED STEPS section to delete until the end. Right-click on a step in the
APPLIED STEPS list box, then click on Delete Until End:

Figure 3.15 – Deleting multiple steps

The Power Query window and its elements 61

Next, let's see how to document and rename these steps.

Documenting and renaming steps
This section is extremely important and provides a workflow that you should definitely
get used to when working in Power Query. The reason for this is that it helps you keep
an accurate record of why you applied certain steps for your own benefit. Furthermore,
when working with others on the same set of data or having to pass queries on to other
colleagues, everyone can see the documented steps available, which will help them
understand why a step was performed.

Any description added to the step properties will be added automatically to the code,
which is visible in the Advanced Editor window:

Note
You do not need to add any syntax to indicate a code comment; Power Query
does this for you.

1.	 Right-click on a step in the APPLIED STEPS list, then click on Properties…:

Figure 3.16 – Adding a step description

62 Introduction to the Power Query Interface

2.	 The Step Properties dialog box will populate, where you can enter a description for
the named step:

Figure 3.17 – The Step Properties dialog box

3.	 Click on the OK command when you have finished to save the description and
return to the APPLIED STEPS list.

Apart from adding a step description, it is equally important to understand what each step
means when glancing at the list of applied steps.

Often, the step names might not be descriptive enough, so you may need to rename them:

1.	 Right-click on a step in the APPLIED STEPS list.

2.	 Choose Rename from the drop-down list provided.

3.	 Rename the step by typing a new name into the placeholder provided.

4.	 Press the Enter key to confirm the new name.

If you are not the only person working on a workbook with its associated queries, then
renaming steps is something to consider.

Investigating the View settings
We will now look at three important settings located in the View tab of the Power
Query ribbon:

•	 Viewing the formula bar

•	 Changing the font

•	 Showing query relationships

Let's consider each one in the following sections.

The Power Query window and its elements 63

Viewing the formula bar
It is always a good idea to have the formula bar visible when working in Power Query.
Although you may not know anything about the Power Query language (M), you will no
doubt become very familiar with its commands as you shape data because the formula bar
will show any changes to the syntax. This is a perfect way to learn Power Query coding:

Figure 3.18 – The formula bar

If you can't see the formula bar when you open Power Query, click on the View tab and
locate the Formula Bar icon from the Layout group. Check the checkbox to show the
formula bar:

Figure 3.19 – The View settings

Next, we will see how to change the font.

Changing the font
Monospacing is a font that applies uniform spacing to all characters and can help
tremendously when dealing with column data such as a long product code as you can
see whether all the characters line up. This is perfect to see if and where you can split the
content of a field consistently:

1.	 Open a query in Power Query.

2.	 Click on the View tab, locate the Data Preview group, then click on the
Monospaced icon to activate it. Monospaced fonts will now show in the
preview window.

64 Introduction to the Power Query Interface

3.	 Note the difference in the spacing. This screenshot shows the default Power
Query font:

Figure 3.20 – Product codes without monospacing
The following screenshot shows the monospaced font applied:

Figure 3.21 – Product codes with monospacing

We can clearly see the alignment of the characters with monospacing applied, which
makes it a little easier to see where you could, for instance, split the column.

Showing query relationships
At the end of the View tab ribbon, you will find the Query Dependencies icon. This icon
is very useful when working on a data model you did not create but now have to work on.
It displays all the tables within the model and shows how the tables relate to each other:

The Power Query window and its elements 65

Figure 3.22 – Query Dependencies

The Query Dependencies window displays all the relationships between queries. To
view all the schematic dependency relationships, click on the Fit to Screen icon in the
bottom right-hand corner of the window:

Figure 3.23 – Fit to Screen

66 Introduction to the Power Query Interface

To change the layout of the scheme, click on the Layout drop-down list icon, then select a
layout from the list provided:

Figure 3.24 – The layout scheme

Now, we will see how to use the Go to Column feature.

Using the Go to Column feature
The Go to Column option is a very useful tool when working with large tables and if you
want to locate a column quickly. Use the Go to Column icon, which is located in the View
tab under the Column group:

The Power Query window and its elements 67

Figure 3.25 – Searching for a column quickly

Now that we have seen how View works, let's move on to Advanced Editor.

Using Advanced Editor
Each time you make an adjustment to data within Power Query, you compile lines of
code. These lines of transformation code are stored in the Advanced Editor window,
where you can create and edit queries using the M Power Query language.

It is crucial to understand Advanced Editor. The reason I say this is that you may edit
code, reorder columns, and complete a few steps on data, but then when you get to the
last step, find that there is an error. To locate the error, you would need to visit the
Advanced Editor window, and having an understanding of how it works is crucial.

As a simple example introduction to Advanced Editor, we will complete a few steps
to shape some data and then use Advanced Editor to rename a column in a previous
step. This will cause an error in our code and we would need to understand why this has
happened in order to fix it:

1.	 Using the SSGFilter.xlsx workbook, we will transform the data table in
the workbook using Power Query.

2.	 From the Data tab, locate the From Table/Range icon under the Get &
Transform group.

68 Introduction to the Power Query Interface

3.	 We are now working in Power Query. Duplicate the DATE of HIRE column so
that we can split it:

Figure 3.26 – Duplicating a column

4.	 Click to select the DATE of HIRE – Copy column.

5.	 We will use the Split Column icon to split this column, using the Delimiter
function to break up its data:

Figure 3.27 – Splitting a column

The Power Query window and its elements 69

6.	 Choose to split with the / delimiter and choose Left-most delimiter for the split:

Figure 3.28 – The Split Column by Delimiter specifications

7.	 Click on OK to continue.

8.	 Remove the extra column by right-clicking on the column and choosing Remove,
as we only need the Year column.

9.	 Rename the Year column Year Hired by double-clicking on the column header
and typing a new name into the placeholder. Then, press Enter to confirm the change.

70 Introduction to the Power Query Interface

10.	 Notice that the steps have been building up in the APPLIED STEPS pane to the
right of the preview:

Figure 3.29 – APPLIED STEPS

11.	 Click on the Advanced Editor icon, located in the Home tab, to view the code that
has been compiled from the steps we performed on the data:

Figure 3.30 – Advanced Editor

The Power Query window and its elements 71

12.	 Take a moment to glance through the steps to understand how they have been
formulated in Advanced Editor; notice the labels that the code has produced for
each step.

13.	 Edit the Year Hired label in the last step of the Advanced Editor window to read
YEAR HIRED (change the casing):

Figure 3.31 – The Advanced Editor labels

14.	 Click on OK when you are done and you will see the updated data.

15.	 Move the YEAR HIRED column and place it just after the DATE of HIRE column:

Figure 3.32 – Moving a column

16.	 We forgot to change the column name of DATE of HIRE to HIRE DATE.
Double-click on DATE of HIRE and type HIRE DATE, then press Enter to confirm.

72 Introduction to the Power Query Interface

17.	 Click on Insert to confirm the step. The data looks absolutely fine, with no
errors present.

Now, if you click on the last step in the APPLIED STEPS pane, you will notice an
error immediately appears in the preview window. This error highlights the problem
label and gives an indication of the problem with a description.

18.	 To the right of the error, you will notice a Go to Error button, which you can use
to show more details about the error. But ultimately, the best thing to do is to visit
Advanced Editor to identify the code problem:

Figure 3.33 – A code error
This is where you will start to understand the code, how it is constructed, and the
importance of the order of steps when reshaping data:

Figure 3.34 – An Advanced Editor code sample

The Power Query window and its elements 73

19.	 Locate the error column:

Figure 3.35 – Problem identified
Update the column name that is causing the problem in the editor:

Figure 3.36 – Problem solved

20.	 Click on Done when complete and the error in the preview window should now be
fixed and the data will once again be shown.

In the next section, we will see how to add a comment to the Advanced Editor.

74 Introduction to the Power Query Interface

Adding a comment to the Advanced Editor window
When you are working with code, it is necessary to add comments, either for your
own reference or to share with others who have access to the data. Although you will
learn more about the Power Query language later in this book, we will introduce
commenting here:

1.	 Open the Advanced Editor window.

2.	 Click at the top of the code.

3.	 For a single-line comment, type the following onto a new line, then press Enter to
move to the next line:

//this is my comment

4.	 For a multi-line comment, type the following, moving to the next line to continue
the comment, after which you need to close the comment:

/*this is my

multi-line comment*/

This is how it appears on screen:

Figure 3.37 – Commenting in Advanced Editor

Next, we will add a comment using the formula bar.

The Power Query window and its elements 75

Adding a comment using the formula bar
Comments can be made for each step in the code process using the formula bar. This is a
very quick method of adding on-the-spot descriptions for steps you have just completed
using Power Query. These comments, although added in the formula bar, will only appear
in the Advanced Editor code after you have added them:

1.	 Locate and select the HIRE DATE column.

2.	 Click to select the column header and the code will display in the formula bar
above.

3.	 Type the following at the end of the code in the formula bar:

/*changed to Date as Time not relevant here*/

This is how it appears in the formula bar:

Figure 3.38 – Comments in the formula bar

4.	 Click on the tick to enter the comment or press Enter on the keyboard.

The comment is now added to the Advanced Editor window and is removed from the
HIRE DATE formula bar code

Keeping comments visible in the formula bar code
To keep commenting visible in the formula bar for a particular step so that it is easier to
refer to when working with complex transformations, simply add the comment in the
code, rather than at the end of the code, as in the following example:

Figure 3.39 – Formula bar comments

This concludes our tour of all the pertinent elements of Power Query. It's now time to
learn how to create a power query with Excel.

76 Introduction to the Power Query Interface

Creating a basic power query
In the topics we have covered so far, you learned a lot about the Power Query interface
and mastered a number of layout techniques and tips. We will now go through the steps to
create a basic power query using an Excel data table from scratch.

First, you need to determine where your data is coming from. For this example, we are
going to use the workbook called MattsWinery.xlsx:

1.	 Once you have opened the workbook, press Ctrl + T to launch the Create Table
dialog box for the Excel data (alternatively, use the Table/Range icon in the Get &
Transform group):

Figure 3.40 – Creating a data table

2.	 Check that the range selected is the range that you need to use to transform
your data.

3.	 Just under the selected range, check that the My table has headers checkbox is
selected so that Excel identifies the top row as the header row.

4.	 Click on the OK button to change the worksheet data into a table and launch the Power
Query window. The Power Query window is now visible over the Excel worksheet.

5.	 The first thing we need to do is change the default name given to the table—let's
name it Wine Sales.

Creating a basic power query 77

6.	 It is always good practice to add a description of the table, so go to All Properties
just below the table name placeholder to add the description, then click on OK
when done:

Figure 3.41 – Query description

Now, you are ready to shape and clean the table data.

Observe the following query:

Figure 3.42 – This is how your query will look before the next steps

We will learn all about the different features to do so over the following chapters, but for
now, we will just go through a few steps so that you get an idea of how it works:

1.	 Change the Region and Season columns to uppercase by clicking on the
Transform tab, locating the Text Column group, selecting the Format icon,
and then selecting UPPERCASE.

78 Introduction to the Power Query Interface

2.	 Duplicate the Wine Sales query by clicking on the query navigation pane,
right-clicking on the Wine Sales query, and selecting Duplicate.

3.	 Rename Wine Sales to Matts Sales and the second query to Prominent
Sales, then filter the Winery column so that each field only displays its winery.

Once you have finished transforming your data, you will need to send it back to Excel for
further analysis:

1.	 Click on the File | Close and Load option (we will explain all the load options in
the next section).

2.	 Once the queries are loaded back to Excel, you will notice the Queries &
Connections pane to the right of the workbook data:

Figure 3.43 – The worksheet and the Queries & Connections pane
Queries are added to separate worksheets automatically as the Close and Load
option was selected for this example.

3.	 The Queries & Connections pane allows you to see all the queries in Power
Query. Double-click on a query to open it in Power Query and continue the
transformation process.

4.	 If you hover the mouse pointer over a query in the Queries & Connections pane,
a snapshot of the query will be visible with a preview of the data and general
information about the query, as well as the option to view the query in the
worksheet or edit it in Power Query:

Discovering the Load To… options 79

Figure 3.44 – Query preview and related information

5.	 You will also notice three dots next to the Edit option at the bottom of the preview
pane. Clicking on this will open a shortcut menu of further actions to take for
your query.

6.	 To the right of the preview pane, you can delete a query.

7.	 If new data is added to the worksheet in Excel, you can click on the relevant query
in the Queries & Connections pane, and then select the Refresh icon on the very
right of the query name to pull in the new data to Power Query.

Now that we can create a simple power query, we will look at the Load To… options in the
next section to learn how to send this data back to Excel.

Discovering the Load To… options
In this section, we will explore the options in the Load To… dialog box and learn
about the different ways that data can be imported from Power Query back to an
Excel workbook.

Let's first take a look at the default custom load settings in Excel.

80 Introduction to the Power Query Interface

Changing the default custom load settings
Standard load options are set in the Excel application. We can visit the Data tab in Excel
2019 to explore and change these default settings. The default settings are listed as follows,
but can be changed by visiting the default options:

•	 Single queries are loaded to a new workbook.

•	 If you are loading multiple queries, they will load to the data model automatically.

Let's investigate where we can change these default load settings:

1.	 In Excel 2019, click on the Data tab.

2.	 If you are already in Power Query, select the File tab to access Options and
settings, then select Query Options):

Figure 3.45 – The Power Query Options and settings options

3.	 Choose Get Data, and then from the drop-down list, select Query Options:

Discovering the Load To… options 81

Figure 3.46 – The Power Query options and settings

4.	 Under the main GLOBAL heading, select Data Load. You can also set default
options for the current workbook only—these options are listed under the
appropriate heading at the bottom left of the dialog box.

5.	 Notice that the Use standard load settings option is on by default, which means
that the query will load to the worksheet only:

Figure 3.47 – The default query options

82 Introduction to the Power Query Interface

6.	 To set the default options for every query so that queries are loaded to the
worksheet and the data model automatically, ensure that you select both of the
options under Specify custom default load settings.

Note
Do not load unnecessarily to the worksheet; for instance, if you have created
25 queries and choose Load to the worksheet by default, all 25 queries will
load to different sheets within the workbook. This is resource-intensive and
normally, you would not need all of those queries in the workbook.

7.	 We can load data faster by clicking on the Fast Data Load option, located under the
checkbox for Load to Data Model. Setting this option will load queries much quicker
but could have an effect on how Excel 2019 performs while the queries are loading.

8.	 Background Data Load for the current workbook is another important option to
consider. Setting this option will allow all queries in the workbook to cache in the
background. Of course, you will benefit from quicker movement between steps in
a query or moving from query to query, but it must be said that with this setting in
Power Query will place a strain on the CPU power and RAM.

9.	 To set this option within Power Query, select File | Query Options, then make sure
you select Data Load under the CURRENT WORKBOOK heading. Then, check
the checkbox next to Allow data preview to download in the background, then
click on the OK button to save the change:

Figure 3.48 – The Data Load settings in the current workbook

Discovering the Load To… options 83

Another setting that can help tremendously when working with connected
sources is to clear the cache. If you receive connection errors when working with
connected online sources, the first troubleshooting advice would be to clear the
cache in Power Query.

10.	 To clear the cache, select File | Query Options, then make sure you select Data
Load under the GLOBAL heading. Then, click on Clear Cache under Data Cache
Management Options, then click on the OK button to save the change:

Figure 3.49 – Clearing the cache in Power Query

Now that we have changed the default settings, let's see how to load queries manually.

Loading queries to the worksheet manually
To load queries manually to the worksheet, take the following steps:

1.	 Open the workbook named SSGLoadDataM.xlsx.

2.	 Click on the data in the worksheet and then select the Data tab.

3.	 Select the From Table/Range icon located under the Get & Transform group.
Power Query will load

4.	 Make some transformations to the data, then you will be ready to manually send the
transformed data back to Excel.

84 Introduction to the Power Query Interface

5.	 Click on the Home tab, then select Close & Load To…:

Figure 3.50 – The Close & Load To... option

6.	 You will be taken back to the Excel interface and the Import Data dialog box,
containing a range of options, will appear over the data table on the worksheet:

Figure 3.51 – The Import Data option

Discovering the Load To… options 85

7.	 The Import Data options relate to how you want to view the data and where you
want the data to be placed on the worksheet. The first option is already selected,
which allows you to view the data in a table on a worksheet. To decide where to
place the data, select Existing worksheet:, for this example.

8.	 Choose a worksheet destination by clicking on the arrow icon, which will take you
to the worksheet to select a cell.

9.	 The data is placed into the cell immediately and the Queries & Connections pane
will open to the right of the worksheet. Also, note that there is a Query Tools
contextual menu on the title bar:

Figure 3.52 – Data with the Queries & Connections pane and Query Tools
The Query Tools contextual menu is only visible when you click on the imported
table; once you click off the table onto the worksheet, it will disappear.

10.	 Once you are in the worksheet, you will also have access to the Load To… options
as often, you will need to unload a query or choose another load option.

11.	 To unload the existing query from the worksheet, visit the Queries & Connections
pane to locate the loaded table; in this case, my table is named Table1 by default.

86 Introduction to the Power Query Interface

12.	 Right-click on Table1 and choose the Load To… option from the shortcut
menu provided:

Figure 3.53 – The Load To… options

13.	 The Import Data dialog box will present itself once again.

14.	 Choose the Only Create Connection option. Notice that the Existing worksheet:
and New worksheet options are now grayed out and no longer available:

Figure 3.54 – The Import Data dialog box

Discovering the Load To… options 87

15.	 Click on the OK button to save the changes.

An information dialog box will appear indicating that the table will be removed
from the worksheet:

Figure 3.55 – The Possible Data Loss dialog box

16.	 Click on OK to confirm.

The data is removed from the worksheet.

Let's continue by looking at the other options available in the Import Data dialog box:

1.	 This time, we will go to Load To… and choose PivotTable Report.

2.	 Right click on the Table1 query connection.

3.	 Select PivotTable Report from the Import Data dialog box.

4.	 Choose a location to place the PivotTable report—we will place it in cell L1.

5.	 Click on the OK button to save the changes.

6.	 The blank PivotTable report is placed in the worksheet, along with the PivotTable
Fields pane.

7.	 Close the Queries & Connections pane as you do not need it right now. You can
always open it up again by clicking on the Queries & Connections icon located
on the Data tab.

88 Introduction to the Power Query Interface

8.	 Select fields to add automatically to the PivotTable report to customize it to
suite your requirements. Note that when you click on the PivotTable report,
the PivotTable Tools contextual menu is visible, offering a huge range of
customization options:

Figure 3.56 – PivotTable report customization

9.	 If, at any time, you find the Close & Load To… option grayed out in Power Query,
simply use the Close & Load option, then access the Queries & Connections pane,
where you will be able to right-click on your query connection and access the Load
To… options to change the method of importing data.

Note
If you are loading data into a data model only, the file sizes are
considerably smaller.

Data profiling tips 89

Data profiling tips
We will learn about the function of the data profiling icons in the View tab in Power
Query through Excel and Power BI. We will look at how to display data using monospace
fonts, as well as how to add Column Quality, Distribution, and the Profile feature in
Power BI and understand what they do. The full set of data profiling options are currently
only available through the Power BI desktop. So, why would we use these features? Simply
put, we do so to make working in Power Query more visual with a few quick access tools
to replace or edit data.

We will be using the SSGProfiling.xlsx workbook for all of the following data
profiling examples.

Although data profiling is available in Power Query through Excel, it is not as
comprehensive as accessing it through Power BI. We will, therefore, explain all of these
options using the Power BI application. For reference, we have included the following
screenshot of the View tab of Power Query through Power BI and Excel to show you how
the options differ.

The following screenshot displays the Power Query View tab elements through Excel
2019. I want to draw your attention to the Data Preview group, where you will notice that
the data profiling elements are minimal compared to those in figure 3.57:

Figure 3.57 – The Power Query data profiling options through Excel 2019

90 Introduction to the Power Query Interface

You will see in the following screenshot that the Data Preview group through Power BI is
much more comprehensive and contains the most important data profiling elements:

Figure 3.58 – The Power Query data profiling options through Power BI

We will now investigate the different data profiling options using Power Query through
Power BI. Make sure you have opened Power BI to follow these examples.

The data profiling options are Column Distribution, Column Quality, and Column
Profile. Let's enable all of these features and then look at them individually in Power Query:

1.	 You should already have the SSGProfiling.xlsx workbook open and have
created a new query from the table data.

2.	 In Power Query, click on the View tab.

3.	 From the Data Preview group, click on the Column Quality, Column
Distribution, and Column Profile checkboxes to activate the features.

You will instantly see some visual changes in the Power Query interface:

Figure 3.59 – The data profiling options activated

Data profiling tips 91

Now, we will learn about each of these features and how they can benefit us. If you are
new to these features, it is important to know how they are dispersed in the Data Preview
pane. The following is a selection of screenshots showing the different areas of application
in the preview window:

Figure 3.60 – The data profiling options

In the next section, we will see about the columns' profiling, quality, and distribution.

92 Introduction to the Power Query Interface

Column profile
To view the column profile, click on a column. The interface will now change to visually
display the dataset so that you can browse its structure:

Figure 3.61 – Clicking on a column to see the column profile

Power Query displays column profiling in the top 1,000 rows by default. Edit this setting
by left-clicking on the Status Bar icon, and then changing the option to Column profiling
based on entire data set:

Figure 3.62 – Changing the column profiling settings

The column profile displays column statistics for informational purposes only to the left of
value distributions as it does not allow any mouse interaction to further transform the data.

Column quality
Looking at the CODE column in the dataset, I can visually see from the column quality
representation above the column that there are errors in the CODE column, which is
displaying 3%. Directly under the CODE column header, you will notice a tiny graphical
representation of the column health:

Data profiling tips 93

Figure 3.63 – Errors displayed in the CODE column and a graphical representation

If you hover with the mouse pointer over the column quality area of the preview pane, you
will notice that a pop-up box appears, offering you the chance to remove the errors in the
query. Click on Replace Errors to fix the problem in the query, and then replace the values:

Figure 3.64 – Replacing errors in the CODE column

This is a really easy method to fix errors in your query!

94 Introduction to the Power Query Interface

Column distribution
Column distribution is a great visual tool but does not really add any other value at this
stage of development. If we right-click on the column distribution visualization, we will
see the same options that were offered for column quality:

Figure 3.65 – A column distribution example

Column profile is definitely the better tool to use as it is an enhancement of the column
distribution feature.

Summary
In this chapter, you got your first detailed look at Power Query. You also learned all about
the query settings that you should not ignore when working with Power Query. So, you
should now be able to customize the environment to suit your requirements.

You should also now possess the knowledge to complete the required steps to create a
basic query and import the queries back to Excel or Power BI using all the Load To…
options in detail.

We also discussed data profiling tips and learned how these options can enhance the
visual interpretation of data within your query.

In the next chapter, we will learn how to connect to numerous data sources, such as a web
page, between Access databases and Excel workbooks, import text and comma-separated
value files, and discuss multiple connections. We will end the chapter by investigating the
data source settings.

4
Connecting to

Various Data
Sources Using

Get & Transform
In this chapter, you will learn how to connect to numerous data sources using the Get &
Transform tool, known as Power Query, and investigate data source settings. There are a
multitude of different ways in which you can connect various data and this chapter will
deal with the data sources you can connect to, from a basic Excel file to multiple SQL
servers, using both Excel and Power BI.

Throughout this chapter, we will learn about the connection procedures and the optimum
data source to use.

96 Connecting to Various Data Sources Using Get & Transform

In this chapter, we're going to cover the following topics:

•	 Connecting from a table or range
•	 Connecting from the web
•	 Connecting from a relational database
•	 Understanding custom connections
•	 Exploring data source settings

Technical requirements
You will need an internet connection to download the relevant files from GitHub.
The code files for the chapter can be found at the following link:

https://github.com/PacktPublishing/Learn-Power-Query

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=pyszzEJlpB4&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=5&t=24s.

You should be able to navigate the Power Query interface with ease since you toured the
interface in the previous chapter. In addition, we're assuming that you have the knowledge
and skills to create a basic query and import the queries back into Excel or Power BI using
the Load To… option.

A brief introduction to databases
There are different types of databases. For one, there are transactional databases, where
all the information is stored in rows. So, for example, if you have a product in a table,
then everything about that one product will be in one row. Transactional databases are
normally built for Create, Retrieve, Update, Delete (CRUD) row operations. In these
types of databases, there is typically a primary key so that if a product category name
needs to be changed at any point, you can change one record that will automatically
update all the products related to this. This sometimes happens in data warehousing,
where one product is replaced with another product as the initial product is no longer
available or has been discontinued. These databases customarily have systems and
operators that do data entry and modifications. One of the biggest problems with this
type of database is that there are numerous different relationships between the tables, so
when you want to perform a query (this can pull up to 25 different tables), this can be
slow and not very efficient. Refer to the Connecting from a table or range section for more
information about tables.

https://github.com/PacktPublishing/Learn-Power-Query
https://www.youtube.com/watch?v=pyszzEJlpB4&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=5&t=24s
https://www.youtube.com/watch?v=pyszzEJlpB4&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=5&t=24s
https://www.youtube.com/watch?v=pyszzEJlpB4&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=5&t=24s

A brief introduction to databases 97

If you look back at the data model that we built in Chapter 2, Power Pivot Basics,
Inadequacies, and Data Management, you will remember that we had the fact table in
the middle (fRegionSales) and then we had the two dimension tables on either side
(dProduct and dSalesRep). The following screenshot will help you remember:

Figure 4.1 – Relational database

From the preceding screenshot, we can observe the following:

•	 Although we only had a few things in this exercise, always try and keep the data
model simple, which will then naturally make it faster. In the middle was our sales
information, which is our fact table, and we created one relationship that connected
our fact table to the tables around it, which are called dimension tables. This is one of
the best models to work with in a Power BI system and is called a star schema:

Figure 4.2 – Star schema

98 Connecting to Various Data Sources Using Get & Transform

•	 The fact table will generally hold numeric and additive data. In our previous
example, our fact table contained how many units were sold, the discount, and
the sales amount. These values are generally numeric and can be manipulated in
some form. The dimension tables generally hold descriptive information. In our
example, a dimension table contained the product, product category, and price,
while in the other dimension table, we had the sales representative and the region in
which they worked. In bigger databases, each of the dimension tables can also have
sub-dimensional tables.

•	 Up to this point, we have been using natural keys, which are quick and easy to
use for our examples regarding relationships between the tables. Although this
has a faster implementation, it does have to use real data that already exists in
the tables. A problem with this could be that when we try and merge multiple
source systems that have different business rules, we will not have control over the
warehouse systems that we would like to implement. Because of these pitfalls, it
is recommended that you use an anonymous Integer Primary Key, which is also
known as a surrogate key. The one great thing about them is that they are not based
on business or application data. They are obviously numeric, and they need to be
sequential. There is no business intention and the only thing that they do is link the
dimension table to the fact table. In the fact table, this surrogate key will be stored
as a foreign key and since the key is numeric, the size will be much smaller than that
of text, which means that it will be quicker to index. The faster the indexing, the
quicker the query's performance. It should be observed that primary or natural keys
are used in online transactional processing (OLTP), whereas surrogate keys are
used in online analytical processing (OLAP) schemas.

There was a time where commercial database management systems (DBMS) all had the
same look and feel from an architectural point of view, but this is changing due to the fact
that so many more people are creating their own bespoke databases. There is no wrong
or right way of creating a database. Personally, I think there are things that will assist in
creating databases with better performance.

Connecting from a table or range 99

Connecting from a table or range
In Excel, the Get & transform tool is based on queries. With regard to a database, queries
are used to retrieve data from a database. The reason why queries are so powerful is
because we might only need a little bit of information from a huge dataset and the query
will only give us the information that is required. The following screenshot shows a range
of products that have been typed into an Excel worksheet. You will notice that, in column
B, there are a number of cells that contain null values that we will have to fill in:

Figure 4.3 – A range in Excel

100 Connecting to Various Data Sources Using Get & Transform

One of the ways in which we can do this is with the Get & Transform tool, which can
be found in the Data ribbon. For us to use this in our query, we will have to convert this
into a table. We can either select the range and use the Ctrl + T shortcut keys, or we can
click Table in the Insert ribbon. We do not need to convert this into a table as Get &
Transform will use either a range or a table. Let's see how this works:

1.	 Click anywhere inside the table and then click on the From Table/Range icon in the
Data ribbon, as shown in the following screenshot:

Figure 4.4 – From Table/Range icon

Connecting from a table or range 101

2.	 Click on the Table/Range icon. Excel automatically selects a range for you to
convert into a table. If you have already converted your range, this step can be
skipped. When we convert the range into a table, Excel will normally select the
entire range, but if there are gaps in your range with blank cells or rows, it might not
pick up the entire range, so you will need to check that it has selected everything
you need. The following screenshot shows that the entire range has been selected:

Figure 4.5 – Creating a table

3.	 Once you've selected OK, the Power Query Editor will launch and you will be able
to see your data.

102 Connecting to Various Data Sources Using Get & Transform

4.	 Right-click on Category | Fill | Down. This will fill all the data down and get rid
of all the null values:

Figure 4.6 – Filling data down
Once complete, we no longer have any null values and we will now be able to use
this data:

Connecting data to the web 103

Figure 4.7 – Filling data down complete

Connecting from a table or range is probably one of the quickest and easiest ways of
connecting data since the data is currently already sitting in the Excel document. This
means there is no need for us to import from a different data source.

Connecting data to the web
It's great that you can get data from the web. Not only can you get the data, but you can
also clean it, getting rid of any unwanted data and formatting it in the correct format
before loading it into Excel. By doing this, the next time you want to use this data, you can
simply refresh it and automatically get all the new updates.

Note
There is one limitation while getting data from the web: the data must be
formatted as HTML tables and not as JavaScript.

104 Connecting to Various Data Sources Using Get & Transform

We are going to look at two different ways to connect to the web, as follows:

1.	 The first way will show you how to connect multiple different tables from the same
site, although there are not many rows in each table.

2.	 The other way is to connect to a CSV file that contains just over a hundred thousand
rows of data.

Being a typical South African, I am really into sports, especially cricket. Let's
have a look at Sky sport's cricket tables, which can be found at https://www.
skysports.com/cricket/tables:

Figure 4.8 – Sky sport's cricket tables

Note
These tables are current at the time of writing. The actual scores and tables may
look very different when you look at the same website.

3.	 Getting the data from the web is relatively easy. If you are using Excel 2016 or
newer, go to the Data tab and then select From Web from the ribbon.

If you are using 2013 or earlier, you click on POWER QUERY and then select
From Web:

https://www.skysports.com/cricket/tables
https://www.skysports.com/cricket/tables

Connecting data to the web 105

4.	 Paste the https://www.skysports.com/cricket/tables link into the
From Web dialog box and then click OK:

Figure 4.9 – From Web address

5.	 The Navigator dialog box will open with a list of all the tables of the World Cups
that have been held so far that are available on this website. If we had used the URL
https://www.skysports.com/cricket/tables/3565/icc-cricket-
world-cup-2019, it would have only displayed the ICC Cricket World Cup
table, but it would have given you a longer list, displaying all the teams and not just
the top few. Clicking on the ICC Cricket World Cup 2019 table will give you a
preview of the table:

Figure 4.10 – ICC Cricket World Cup table

https://www.skysports.com/cricket/tables
https://www.skysports.com/cricket/tables/3565/icc-cricket-world-cup-2019
https://www.skysports.com/cricket/tables/3565/icc-cricket-world-cup-2019

106 Connecting to Various Data Sources Using Get & Transform

Note
The table called Document does not contain any tables; it only holds the
specific page's HTML code. If you click on any of the other tables, they all
contain data in tables.

6.	 When you click on the Web View tab at the top of the preview, it will show you the
website that it is linked to:

Figure 4.11 – Web View of the data

7.	 If we want to add more than one table in Excel, we can click on Select multiple
items and then select all the tables that we would like to import.

8.	 Once you have selected the ICC Cricket World Cup 2019 table, click on Transform
Data. The reason why we do not select Load is because we would like to edit or
clean the data before we load it into Excel or the data model.

Connecting data to the web 107

After completing these steps, Power Query Editor will open. Here, there are several
things that we can do:

Figure 4.12 – Power Query Editor

9.	 From the preceding screenshot, we can observe that we can use the Editor to do
the following:

•	 Manage the query

•	 Choose or remove columns and rows in the table

•	 Sort data

•	 Split columns

•	 Group and replace values

•	 Combine tables with other data sources

•	 Adjust the parameters of the table

108 Connecting to Various Data Sources Using Get & Transform

10.	 Once you have edited the information you would like to edit, click on the Home tab
and select Close & Load To...:

Figure 4.13 – Close & Load To… icon

11.	 This will open the Import Data dialog box, where you have the option to create a
Table, PivotTable Report, PivotChart, or Only Create Connection. You also have
the option of adding this to an existing worksheet or a new worksheet. For now, I
am going to create a table in a new worksheet so that we can see the information, as
shown here:

Figure 4.14 – Import Data dialog box

Note
It is important to select Only Create Connection. You do not want the same
data in your worksheet and in the data model.

Connecting data to the web 109

12.	 The appeal here is that when the data changes on the web, you can refresh the data
in your sheet and it will automatically refresh the table. This means that if you have
to complete the same report every month, you do not have to do anything except
refresh the data by selecting the Refresh All icon in the Data ribbon, as shown here:

Figure 4.15 – Refresh All icon

13.	 If you are using more than one data source, you can click on Queries &
Connections, which will open a window that shows you all the connections from
the various data sources to this sheet:

Figure 4.16 – Queries & Connections window

110 Connecting to Various Data Sources Using Get & Transform

14.	 If you are using a version of Excel older than 2016, select Show Pane from the
POWER QUERY tab, which will open a Workbook Queries window:

Figure 4.17 – Workbook Queries window

From the workbook query, you are able to see your connections in the same way as you
can in Excel 2016 and newer.

There are a few compatibility errors with things that are created in newer versions of
Excel and then opened in a version earlier than 2016. You will be asked to either update
your version of Power Query or your version of Excel. Normally, if you refresh the data,
the error message goes away, but unfortunately, there is no guarantee of this. If this
happens, you will only see the data from when it was saved and will not be able to view the
refreshed data from the web. If you followed this exercise in a version of Excel earlier than
2016, it will refresh the data from the web without any problems:

Figure 4.18 – Compatibility Warning regarding versions

Connecting from a relational database 111

To work on these compatibility issues, you can refresh the data from the web in earlier
versions of Excel. To do this, you can either click on the Refresh button on the right of the
connected query or you can right-click and then select Refresh:

Figure 4.19 – Refreshing the data in earlier versions of Excel

If you open this Excel document in the future and the source data has changed, Excel
will notify you of this, telling you that there is newer data and that you have the option
of refreshing it. In this way, you will always have the most current information from
any website.

Connecting from a relational database
To study an example of connecting from a relational database, I am going to get data from
a relational database that uses Structured Query Language (SQL). Although this might
seem harder to do than any of the other things we've done thus far, it is very similar, and
the hardest thing to do is type your password correctly for the authentication process.

There are different ways to connect to a SQL database; that is, either through Excel's Get &
Transform tool or through Power BI.

We'll try each of these options in the following sections.

112 Connecting to Various Data Sources Using Get & Transform

Connecting through Excel's Get & Transform tool
To connect to a SQL database, perform the following steps:

1.	 Launch Excel.

2.	 Click on the Data ribbon | Get Data | From Database | From SQL Server
Database.

At this point, it is pertinent to say that there are huge numbers of databases that you can
connect to, as well as to Azure directly, but you can also make connections to online services
such as SharePoint, Exchange, and Facebook. This is shown in the following screenshot:

Figure 4.20 – Connecting to a SQL database

Connecting from a relational database 113

The SQL Server database connection dialogue box window will open, where you have to
type in your credentials to connect to SQL Server:

Figure 4.21 – SQL Server authentication

Once connected to the instance, SQLData and Test are the two databases you will see,
and Orders and Customers will be two of the tables within the database:

Figure 4.22 – Connected to the SQLData database

Once you've clicked on the relevant table that you require, click Transform, which will
take you to Power Query Editor.

114 Connecting to Various Data Sources Using Get & Transform

Connecting through Power BI
Although very similar to connecting via the Get & Transform tool, Power BI has a few
more little tricks that you can implement. Try it out, as follows:

1.	 In Power BI, click on Get Data in the Home ribbon and select More….

2.	 From Get Data |All | SQL Server database, select Connect:

Figure 4.23 – Connecting to the SQL Server database in Power BI

Connecting from a relational database 115

Just like in the previous example, you will have to connect to a database, but Power BI
provides an extra option that Excel does not have: you can choose to Import or use
DirectQuery. When you use DirectQuery, it does not copy or import data into Power BI,
it is always using the most current data. This means that if you are creating or interacting
with visualizations, Power BI queries the data source. This means you always have the
most up-to-date information, which allows you to build visualizations with very large
datasets as you do not need to import the data into Power BI. One of the other advantages
is that the 1 GB dataset limit does not apply if you are using DirectQuery.

However, this means that apart from having a good internet connection, every time
a visual is refreshed, it needs to rerun the query and, depending on the backend, this
might take a little while. If it takes between 5 and 30 seconds, then this is acceptable, but
anything over a few minutes will time out and the user will receive an error message.
Naturally, the number of concurrent users will also affect the performance of the
published report, so this will need to be taken into account.

If you are using the Import option, then you are saving a copy of the data in your database
model and using this to create or interact with your visualizations. Power BI needs to
refresh the data for you to see the live or most up-to-date version:

Figure 4.24 – Import or DirectQuery

Once connected to the server, you will need to authenticate yourself and then you can
select the tables that you would like to load or transform, which is very similar to what we
did when we connected to the SQL Server database in Power BI.

116 Connecting to Various Data Sources Using Get & Transform

If you click on Transform Data, you will be taken to Power Query Editor, where you can
clean your data. If you click on Load, it will import the data into Power BI:

Figure 4.25 – Importing the data into Power BI

The data that you have imported into Power BI is displayed as individual datasets in the
data view, which can be found on the right-hand side of the screen:

Figure 4.26 – Datasets in the data view

Understanding custom connections 117

If you click on Edit Queries, this will take you to Power Query Editor:

Figure 4.27 – Edit Queries menu

This is one of the most powerful ways to connect data from your SQL server as it is always
up to date and numerous people can work using the same data. Of course, you also have
the extra security of needing to authenticate with usernames and passwords.

Understanding custom connections
There are various ways in which we can connect data to Power BI and Power Query. Some
of the most common ones can be found in the Get Data menu on the Home ribbon, but
we can load other data that is not as obvious. We are going to load data from the web
again, but this time, we will load a CSV file so that you can see that we will have to clean
the data before we can use it. Click on the Data tab and select the From Web option, the
same way in which we did this earlier. Paste in the following URL, https://github.
com/PacktPublishing/Learn-Power-Query/Chapter4-Data/master/
SalesData10.csv, and then click OK:

Figure 4.28 – From Web URL

https://github.com/PacktPublishing/Learn-Power-Query/Chapter4-Data/master/SalesData10.csv
https://github.com/PacktPublishing/Learn-Power-Query/Chapter4-Data/master/SalesData10.csv
https://github.com/PacktPublishing/Learn-Power-Query/Chapter4-Data/master/SalesData10.csv

118 Connecting to Various Data Sources Using Get & Transform

When the data has loaded, Excel is clever enough to know that this is a Comma Delimiter
file. If you are connecting to a different type of file, or the Delimiter type is not a comma,
you can change this by selecting the appropriate type from the Delimiter drop-down box,
as shown here:

Figure 4.29 – Changing the Delimiter type

Click on Transform Data and then make the appropriate changes in Power Query
Editor. When you have finished, click on Close and Load To, at which point you can
create a table or load it into your data model:

Understanding custom connections 119

Figure 4.30 – A table from a CSV file from the web

Custom connections can made in two ways, as we will see in the following sections.

120 Connecting to Various Data Sources Using Get & Transform

Connecting from Workbook
Every now and again, you will want to merge existing information from one worksheet
into a table, but there are too many gaps and it would be difficult to create just one table.
The following screenshot shows a survey that was done over a few days about one of our
products, namely, Game1:

Figure 4.31 – Survey about the Game 1 product

In the survey, each criterion is based on a scale of 1 to 5, with 5 being the best and 1 being
the worst. It would take too long to do this using conventional methods, but it is possible
to import the entire sheet into Get & Transform so that we can clean this data. Let's see
how this is done:

1.	 Start by creating a new sheet and then click on the Data tab. Then, click on Get
Data |From File | From Workbook:

Understanding custom connections 121

Figure 4.32 – From Workbook selection

2.	 Select the file that you would like to import and then click on Import. Once the file
has loaded, select the worksheet and then click Transform, which will bring up the
Power Query Editor window:

Figure 4.33 – Power Query Editor

122 Connecting to Various Data Sources Using Get & Transform

3.	 This is where we can clean the data. We will go into the process of cleaning the
data in much greater detail in Chapter 7, Automating Reports in Power Query. This
chapter deals with importing the data into a data model or table.

4.	 To look at this very briefly, to clean some of the data, you can right-click on
Column2 and then select Remove as we do not need this column. You can do the
same with Column4 and the Product:Game1 column if you wish.

5.	 Select the new Column2 and then right-click and select Fill Down. You can rename
the column headings at the top and you can also filter the rows, thus getting rid of
the averages and the null values.

6.	 One of the important things to realize is that Power Query Editor keeps a record of
everything that you do in the APPLIED STEPS window. The reason for this is that
if you now import or merge a different worksheet into this table, all the steps that
you created will automatically be applied to the other tables that are imported:

Figure 4.34 – Power Query Editor Applied Steps – part 1

Understanding custom connections 123

7.	 Click on Close and Load to insert your newly formatted table. This was a great deal
easier to clean using Get & Transform than trying to edit it manually in Excel:

Figure 4.35 – Power Query Editor Applied Steps – part 2

That's it – we are done connecting from Workbook.

124 Connecting to Various Data Sources Using Get & Transform

Connecting from a folder
This is one of the easiest ways to get information into your table or data model. The one
bit of advice we will provide is that you must have the files that you want to use in the
database in the same folder. It is worth creating a dedicated folder for you to use when you
do this. It will save you time and effort later. Also, make sure that you provide the folder
with a suitable name, as you might end up with many of these folders. You will notice
from the following screenshot that I have CSV files in the folder, but that I may also put
Excel and text files in there too:

Figure 4.36 – Folder containing all the relevant files

Each of these files is a months' worth of sales for our business and contains approximately
10 to 15,000 rows' worth of data. Each file contains four columns, but you could import
many more if required.

Note
Each file needs to have the same number of columns, with the same headers in
the same order. Generally speaking, if you are exporting from a CRM, POS, or
other such system, this would normally be the case anyway.

The following screenshot snippet shows this:

Figure 4.37 – A CSV file with the same headings

Understanding custom connections 125

We can do this as follows:

1.	 Launch Excel and click on the Data ribbon. From here, select Get Data, then From
File, and then click From Folder.

2.	 Excel versions prior to 2016 look a little bit different to this as you have to click on
POWER QUERY, select From File, and then click on From Folder:

Figure 4.38 – Excel (prior to 2016) From Folder menu

3.	 Either copy and paste the folder path or click on Browse and find the folder
containing all your files. Then, click OK.

You will see that a dialog box appears containing the different files that you have in
your folder. You now have the option of doing the following:

•	 Combine

•	 Combine & Edit

•	 Combine & Load

•	 Combine & Load To…

•	 Load

126 Connecting to Various Data Sources Using Get & Transform

•	 Load to

•	 Transform Data

•	 Cancel

I usually select Transform Data, which is the same as Combine & Edit:

.

Figure 4.39 – Combine & Edit menu

4.	 At this point, if there are files that you do not need, you would select those files
and remove them. But we need all these files, so I am going to combine the files by
clicking on the two down arrow keys on the Content column:

Figure 4.40 – Content column option

Understanding custom connections 127

5.	 When the Combine Files dialogue box opens, we will see a preview of our first
file. Since these are CSV files, we will need to make sure that they are in the correct
format. Selecting the file format helps Power Query know what format things such
as the date and time should be in. If the data doesn't look correct, make sure that
Delimiter is set to the correct type:

Figure 4.41 – Combine Files dialogue box

To combine files, perform the following steps:

1.	 Start by selecting which of the files you would like to use as the sample. Provided
that they are all in the same format, it should not make any difference.

2.	 In the case of CSV files, there will be a comma delimiter, but you might have text
files that have space or tab delimiters.

128 Connecting to Various Data Sources Using Get & Transform

3.	 Lastly, make sure that the first 200 rows will be enough for Power Query to detect
the data type. Once completed, click on OK:

Figure 4.42 – Power Query Editor

From the preceding screenshot, you can see the following:

•	 Power Query has taken the files and merged them into one table. On the left-hand
side of the preceding screenshot is the queries that Power Query generated when
you clicked on the OK button previously.

•	 The Transform Sample file from CSV is an important query as this is the basis of
all the other files and is used as the template for all existing and future files that are
added to this folder. If you wanted to change what this query looks like, this is the
query you would need to modify.

•	 csv at the bottom-left of the queries panel is the final query that merged the files
into one table. This is the query that you are currently looking at. We can now
transform this in the same way we transformed the other tables in Power Query
Editor. Right-click on Source.Name and then select Remove. You can also change
the data type of the Sales column to Currency.

Understanding custom connections 129

•	 On the right-hand side, you will see Query Settings. I would rename Name under
PROPERTIES to something more appropriate. Once you have renamed this, you
will notice that the named csv query on the left will also change to the same name
that you have just typed in.

•	 Underneath this is APPLIED STEPS, where you will see a list of the steps that you
have completed to clean your data:

Figure 4.43 – Query Settings window

130 Connecting to Various Data Sources Using Get & Transform

•	 Once completed, click on Close & Load at the top-left of the window. From here,
you have the option of clicking Close & Load, which will create a table in a new
worksheet with the query you have created, or you can click on Close & Load To,
which will load this in the Power Pivot Data model. I used the latter option and
added this to the data model, as shown here:

Figure 4.44 – Completed table from the query

•	 The actual charm with this is that we had completed the first three quarters of the
yearly sales data and we now have the last quarter that we would like to add to this.

•	 Insert the other files into the same folder that contains the other files:

Understanding custom connections 131

Figure 4.45 – Inserting additional months into the same folder

•	 In Excel, right-click anywhere in the table and click Refresh from the shortcut
menu provided:

Figure 4.46 – Refreshing the query data

132 Connecting to Various Data Sources Using Get & Transform

•	 Although it refreshes very quickly since it already contains the query template, it
actually reloads all the data in the folder and runs the steps that you set up in Power
Query Editor before reloading the merged table in Excel.

•	 If you loaded this into the Power Pivot data model, you can right-click on
MergeMonths2019 and then select Refresh or click on the Refresh icon in the
Queries & Connections window, as shown here:

Figure 4.47 – Refreshing the query data from the Queries & Connections window

Next, we move on to understanding the various data source settings.

Exploring data source settings 133

Exploring data source settings
Once you have the connections to the data, it is possible to edit the credentials for each
connection you have used, not just for the active connection, but for all the connections
that you have made. This means that if your data source is located in a folder called
sales, but now you want the connection to be in a subfolder of sales, you need to be
able to change the source settings so that Power Bi/Power Query knows where to look.
We will learn how to do this in Excel next.

From Excel
There are different ways in which you can get to the same destination. I have added
three here:

•	 If you are in Excel and you have loaded the query into a table, then you can click
anywhere in the table and select Edit from the Query ribbon. This will open Power
Query Editor:

Figure 4.48 – Query ribbon

•	 Alternatively, you can right-click the query in the Queries & Connections window
and select Edit, which will also open Power Query Editor.

•	 Finally, in Power Query Editor, select Data source settings from the Home ribbon,
which will open the Data source settings window:

Figure 4.49 – Power Query Editor

134 Connecting to Various Data Sources Using Get & Transform

In the Data source settings window, you can change the source, edit the permissions, and
clear the permissions:

Figure 4.50 – Data source settings window

This is how it goes:

•	 When you click on the Change Source… button, you can change the source from
your current data source to a different data source. For this, you would follow the
same steps that you followed when you created the data source.

•	 When you click on Edit Permissions… to edit the database credentials, this allows
you to change your credentials for when you log in or authenticate your credentials,
either through Windows, the Database SQL, or your Microsoft Account.

Summary 135

This is shown here:

Figure 4.51 – Edit Permissions window for the SQL Server database

Once you have created the connections that you need, you generally don't need to change
the data source settings. Of course, if you have created a Power BI report and you have
published it and you now need to create another Power BI report on different data that is
similar in structure to the one you have already created, then by changing the data source,
you can quickly create a report on the new data. When changing the data source settings,
you may also need to reauthenticate with your SQL Server or change permissions.

Summary
From this chapter, you have learned about the numerous ways in which you can connect
data to Power BI and Excel. One of the greatest advantages of this is the different types
of connections that Power BI can connect to, including from a single file, folder, SQL
database, Azure to Online services, and so on. One of the more powerful features is that
you can connect to other data sources that are not listed and that you can create custom
connections. Power BI creates datasets that are both the data source and the data itself.
Every time you connect to your data, Power BI creates a dataset. This is then used for
creating your reports and visualizations.

In the next chapter, you will learn how to transform the data that you now have in Power
BI and Power Query.

In this section, you will learn how to transform data using the Power Query editor
and write functions in Power Query. We will discover a number of functions, including
IF, index, and modulo, and create parameters to alter query paths in a table. You will
work with dashboards, as well as learn how to create multi-dimensional reporting and
automated reports.

This section comprises the following chapters:

•	 Chapter 5, Transforming Power Query Data

•	 Chapter 6, Advanced Power Queries and Functions

•	 Chapter 7, Automating Reports in Power Query

•	 Chapter 8, Creating Dashboards with Power Query

Section 2:
Power Query Data

Transformations

5
Transforming Power

Query Data
In this part of this book, you will learn how to transform data using Power Query in a
multitude of ways and understand why it is important to prepare your dataset prior to
analysis. You will apply Unpivot and Pivot to a dataset to structure data in the correct
tabular format; work with row and column tools such as split, merge, duplicate, and
extract; and use conditional columns to display the output you desire from if…then…
else conditions. The automatic background refresh setting will also be discussed in this
chapter. We will learn how to extract ages from a date column, which saves a huge amount
of time as you would normally have to work this out for each individual column from a
date column entry. In addition, we will look at using various delimiter constraints, as well
as grouping data from various rows into a single value.

In this chapter, we're going to cover the following main topics:

•	 Turning data with the unpivot and pivot tools

•	 Basic column and row tools

•	 Merging and appending tools

•	 Grouping data

•	 Working with extraction tools

140 Transforming Power Query Data

Technical requirements
With the chapters we've studied so far, you should now be a confident user of Excel and be
able to manipulate data, rows and columns, as well as be proficient with the advanced sort
and filter tools available. You should be able to create a query using the Get & Transform
tool, the Close & Load option, and also launch and operate the Queries & Connections
pane in Excel.

The examples used in this chapter can be accessed from https://github.com/
PacktPublishing/Learn-Power-Query/.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=n1swG3Z44mM&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=6&t=515s.

Turning data with the unpivot and pivot tools
Transforming data means to shape data by renaming tables or columns or making the
data presentable for analysis. You will master the use of the Pivot and Unpivot tools to
transform tabular data into an accepted tabular format. After using these tools, we will
delete any unnecessary columns and rename column headers, and name queries. We will
take note of the applied steps and learn how to refresh data sources in Power Query. These
steps are all necessary to get the data prepared for further analysis or reporting.

Data is presented in many forms for many different reasons. Some could be made visually
appealing, such as a simple financial budget report with financial years as rows and
months as column headers, while others could be more complex and used for analysis
using PivotTables and/or storing data in a data storage application such as Power BI.
Always envisage the aim of the dataset you are working with and prepare the data prior to
performing any calculations or analysis. Power Query is definitely the go-to tool for data
transformation in such cases.

The pitfall of not structuring a dataset correctly could lead to many analysis problems, and
we simply end up wasting valuable time having to construct many calculations. You would
not have to do this if the dataset was prepared correctly from the outset.

https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://www.youtube.com/watch?v=n1swG3Z44mM&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=6&t=515s
https://www.youtube.com/watch?v=n1swG3Z44mM&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=6&t=515s
https://www.youtube.com/watch?v=n1swG3Z44mM&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=6&t=515s

Turning data with the unpivot and pivot tools 141

When getting data ready for use in PivotTables, for example, there are numerous steps
to ensure you get the most out of summarizing and analyzing large datasets. We should
adhere to these prior to using any analysis tool:

•	 Make sure that there is no duplicated data in the worksheet.

•	 Remove any filters you have applied to the data and ungroup any cells you have
grouped using the Outline feature in Excel.

•	 Format the data type for each column in the worksheet. This means that we need
to format dates with the appropriate date format, with values as either number,
currency or accounting, and so on. Make sure that the column headings are labeled
correctly so that they are easily understood and are not long-winded descriptions.

•	 Never include total calculations, subtotals, or average columns. The reason for this is
that once we have cleaned and transformed data in Power Query, it is then analyzed
by Power Pivot, Power BI, or Excel tools to reach different results.

•	 Get rid of any blank cells from the data source.

•	 The last thing you need to do is format your data as a table – the reason that this is
so important was explained in Chapter 4, Connecting to Various Data Sources Using
Get & Transform. It is extremely important that the data is formatted as a table,
either prior to or when using the Get & Transform option, as it will ensure that any
extra rows or columns that are inserted are automatically included when refreshing
the data from various sources.

Let's have a look at an example of a poorly designed dataset and how we can fix this using
the Unpivot tool.

The following screenshot shows a source dataset that has been poorly designed for analysis
in Power Pivot or any other analysis tool. The dataset does not comply with the rules
outlined in the preceding list:

Figure 5.1 – Poorly designed source data

It contains unnecessary calculation columns per quarter, as well as the final total sales. The
merged column headings can also be removed. Once this is complete, the Region column
can also be converted from rows into columns within Power Query.

142 Transforming Power Query Data

After following the customizations to prepare the data for analysis, the dataset looks much
more presentable, but we need to tweak it a little more using the Unpivot tool in Power
Query. To demonstrate the Unpivot tool, we will use the sales columns from January to
September. Instead of having separate columns for each of the sales figures for the three
quarters, we will translate the data from all nine columns into two columns with rows.
Let's get started:

1.	 Open the dataset named YearlyProductSales.xlsx in Power Query. You can
achieve this using Excel or Power BI.

2.	 Select all nine sales columns in the dataset. Then, click on Transform | Unpivot |
Unpivot Columns from the Any Column group:

Figure 5.2 – Using the Unpivot tool

3.	 The result provides a column for Attribute, listing the months, and a column for
Value instances, which are associated with each month:

Figure 5.3 – Attribute and Value columns after Unpivot

4.	 Rename the columns so that they suit the table's content. Simply double-click on the
Attribute column heading and replace it with text of your choice. Do the same for
the Value column.

Turning data with the unpivot and pivot tools 143

5.	 If you need to undo a previously performed step or if you would like to identify
whether a certain step was performed on the query data, simply visit the APPLIED
STEPS window to view, delete, rename, or reorder steps you have applied to the
data. To delete a step, click on the red cross to the left of the applied step, or right-
click on a particular step to access various options.

6.	 Let's perform the Pivot column option, which does the opposite of the Unpivot
feature, by using the names of data located in rows to display across columns. Make
sure you are using the SafestSolutionsLaw.xlsx data source for this example.

7.	 Select the CASE TYPE column to use the items within the column to base the new
columns on. Then, click Transform | Pivot:

Figure 5.4 – Transform Pivot

8.	 For Values Column, select BALANCED OWED from the list provided:

Figure 5.5: Result of the Pivot column feature

144 Transforming Power Query Data

9.	 Select Advanced options and choose Don't Aggregate for the Aggregate Value
Function since we do not want to sum values at this point.

10.	 Click on OK to view the result of the Pivot:

 Figure 5.6 – Result of the Pivot column feature

Figure 5.6: Refresh Notification Bar

We will now see two created queries in the Queries pane. Rename the first query to
UnPivot and the second query to Pivot:

Figure 5.7 – Renamed queries in the Queries pane

With that, you should be confident in using the Pivot and UnPivot options within Power
Query to transpose row and column data. In the next section, we will investigate the
various refresh options and understand how the refresh process works.

Refreshing data
Once we have created the queries, the source data behind the queries is often updated by
entering and manipulating the new data. For example, new data files could be received by
the finance department that would need to be added to the existing datasets, live web data
is updated, or the user adds more data to the dataset manually. The beauty of refresh is that
you create queries only once and then use that query over and over again just by refreshing
the connection to the data source, wherever that may be. When calculating in Excel, the
data engine will recalculate automatically, every time something changes in the workbook
data. Power Query, however, needs to be told when to refresh data. It is a critical step to
understand refresh so that the end result of your data transformation is accurate.

Turning data with the unpivot and pivot tools 145

With refresh, you do not have to remember any steps you performed the previous time
you worked on the data. As you already know, Power Query records these steps as
APPLIED STEPS using the M language code. Therefore, when you refresh it, it is a simple
process for Power Query to refresh everything by loading or importing new data and then
performing the steps once again, including the new data.

If we have connections to Excel workbook data, then the Data | Refresh All option from
the Queries & Connections group in Excel is the way to refresh connections.

To refresh all queries directly within Power Query, click on the Home | Refresh Preview
icon, and then select Refresh All. Alternatively, select Refresh Preview to update only
the current query. The refresh notification bar will populate just above the formula bar to
remind you to refresh your queries when working within Power Query, as shown in the
following screenshot:

Figure 5.8 – The Refresh notification bar

Remember that when we refresh all queries, this could take a while, especially if the
datasets are huge. Another very important fact to know is that when refreshing all queries,
the sequence of query refresh is conducted in the correct order. When we choose to
refresh queries individually and manually, you would need to do so in the precise order
and at the accurate time.

If your data source is located in an external file, then only the last saved version of the source
is loaded into Power Query. Even if the external file is open on the computer and you have
recently edited the file, you would need to save the file to include recent edits in the refresh.
If, however, the source data and the queries are located in the same workbook, any edits
would be fused automatically, without them being saved before refreshing. Be careful when
refreshing a query based on another query as not all the queries will be refreshed.

146 Transforming Power Query Data

We can set the background refresh option to update automatically while we continue
working. This method has its pros and cons. One pro would be that you can work
while the refresh is happening, but while you are working, you may change a formula
or recalculate or update Pivot tables, and these changes might not be included if the
background refresh is not complete yet. Follow these steps to learn how to refresh:

1.	 To set the automatic background refresh, make sure you have Excel open with
an active query and connection. Click on Data | Refresh All Connection
Properties….

2.	 In the Query Properties dialog box, locate the Refresh control heading on the
Usage tab.

3.	 Ensure that Enable background refresh is active. Then, choose a Refresh duration
in minutes:

Figure 5.9 – Refresh options in Excel

Basic column and row tools 147

4.	 Note that you can choose to refresh data when opening a file, as well as refresh the
connection when using the Refresh All option.

5.	 Click on OK to confirm the changes you've made and return to the Excel workbook.

In this section, we have learned how data is refreshed and the various options related to
refresh within the Query Properties dialog box. In the next section, we will concentrate
on altering data using column and row tools.

Basic column and row tools
In this section, you will work with many column tools in order to remove columns you no
longer require and split columns so that data is separated from one column into separate
columns. You will be working the extract, merge, index, and conditional columns.

You will learn how to reshape table data so that the data is cleaned and ready for analysis
in other applications, such as Power BI and Excel Power Pivot, by removing unwanted
columns; removing top or bottom rows, should there be additional information you don't
require; using the index column to aid analysis; creating conditional columns based on
criteria you provide and applying column filtering using AND/OR conditions; using the
single and multiple criteria filter; removing any duplicating rows or null values; working
with the header row in a query; and splitting column values into separate delimiters. These
options help to shape data so that it is presented in a format that aids reporting.

Removing columns
Removing columns in Power Query is extremely easy, and the process is very similar
to removing a column in Excel. If a column adds no analysis purpose in a query, then
remove it. The reason for this is that unnecessary data adds to the load when refreshing
or working with the data. The following methods can be achieved using Power Query in
Excel or Power BI:

1.	 We will use WeatherData.xlsx for this query.

2.	 There are two options to remove columns. The first is Remove Columns, while the
second is Remove Other Columns. We can use the right-click method or the ribbon
to perform these actions. It depends on what you select as to which option you wish
to use. Use the Remove Columns option to remove the selected columns and use the
Remove Other Columns option to remove all columns that are not selected.

3.	 Select the column or columns to remove. For this example, we will remove the
column labeled Out.

148 Transforming Power Query Data

4.	 Right-click and select Remove:

Figure 5.10 – Removing columns

5.	 The columns disappear from the query. Do not forget to save the query to update it.

Next, we will learn how to remove a top or bottom unwanted row to make the data
appear crisp.

Removing top or bottom rows
One of the most common things to do when cleaning data is to remove unwanted top
or bottom rows from table data. Let's continue with the WeatherData query from the
previous example. There are a number of remove row options located on the Home |
Remove Rows drop-down list in Power Query. Click to select Remove Top Rows. Specify
the number of rows to remove (in this case, we will remove only the first row) from the
top of the data table. Click on OK to confirm and save the query:

Figure 5.11 – Removing the top rows from a data table

Notice that you are also able to specify a pattern to remove alternative rows. You would
specify the starting row, then the number of rows to remove, and lastly the number of
rows to keep. Power Query will work its magic according to the pattern you provide.

Basic column and row tools 149

Using the index column
We will create an index column to act as a row counter or temporary column so that it can
aid data analysis. The index column will be a set of numbers that is used to count rows.
For this example, we will use the SSGProductsAll query to create the index column:

1.	 Click to select the SSGProductsAll query (this query was created as part of the
Turning data with the unpivot and pivot tool section in this chapter).

2.	 Navigate to Add Column | Index Column | Custom… to create an index column
with a specified increment:

Figure 5.12 – Index column navigation

3.	 The Index column dialog box will populate, where you will enter the values
to increment by choosing the starting point and the increment value for each
subsequent number. For this example, we will start with 1 and increment by 1.
Enter these values into the placeholders provided:

Figure 5.13 – Index column created at the end of the table

150 Transforming Power Query Data

4.	 Once the index column has been created, it will be visible at the end of the table.
We would normally require the index to be at the beginning of the table. To move
the index column so that it takes the role of the first column in the table, click on
Transform | Move | To Beginning:

5.	 Save the query to update it.

With that, you have learned how to create an index to serve as a row counter as the first
column of query data. Now, we will focus on creating conditional columns using the if/
then/else statement, asking questions of our data so that we achieve the result we want.

Creating a conditional column with the if…then…else
statement
The conditional column is a tool within Power Query that returns an automatic result
based on meeting a certain set of conditions. Specifically, this is useful when requiring the
if…then…else conditions and can be a complex tool that allows else…if clauses to be
executed. We will run through the steps for creating a conditional column to display the
sales team for each region matching each of the salespersons in column A of the source
data. Let's get started:

1.	 Import the SalesTeams.xlsx data into Power Query using either Excel or
Power BI:

Figure 5.14 – The source workbook data structure for SalesTeams.xlsx

Basic column and row tools 151

2.	 Rename the query SalesTeams.

3.	 What we would like to do here is create a conditional column that lists the relevant
sales team for each of the salespeople in column 1. At present, the data source lists
the Sales Team region, then directly beneath that, it lists the salespeople in that
region and continues in that fashion down the column. It depends on what you
intend to do with the data, but in this case, we would like to end up with the Sales
Team region in one column and the salesperson in the other. Let's run through the
steps to complete this.

4.	 Make sure you have selected the SalesTeams query. Then, click on Add Column |
Add Conditional Column.

5.	 In the dialog box that appears, set New column name to Sales Teams. We will
now compose the if… then… else statement. If Column1 begins with Sales,
then the output must be in Column1; otherwise, place Null into the column. This
is the first step and will create a new column with the headings for each of the sales
teams and a null value under each. Click on OK to confirm this:

Figure 5.15 – If, then, else, conditional column criteria

152 Transforming Power Query Data

6.	 Your result will look identical to the following:

Figure 5.16 – If…then…else result

7.	 The next step is to fill down the sales teams in the new conditional column so that
each salesperson is placed in the correct team. Right-click on the Sales Teams
column and choose Fill | Down.

8.	 Lastly, we need to filter the rows in Column1 to remove the words beginning with
Sales so that only the salesperson's names appear in that column.

9.	 Click on Filter icon, which is located to the right of the Column1 header. The
filter options will populate. Here, you will need to select Text Filters | Does Not
Begin With….

10.	 Locate the text Keep Rows where 'Column1' does not begin with and then enter
the text Sales into the placeholder that reads Enter or select a value.

Basic column and row tools 153

11.	 Click on the OK icon to confirm and see the result:

Figure 5.17 – The Conditional Column result

12.	 Rename Column1 so that it says Salesperson, if required.

You are now able to create a conditional query using the if…then…else statement, thus
achieving an automatic output based on certain criteria. The next section will focus on
using And/Or conditions when filtering data.

Filtering data using the And/Or conditions
As we are already experienced with filtering and sorting data within Excel, we know
that there are many methods to achieve certain results. The same applies to filtering data
using Power Query. We will look at two types of filtering situations, namely, And/Or.
Power Query will only load 1,000 distinct records at a time into the filter list. You will see
a notification regarding this, stating that the list of values in the filter list is incomplete.
Always click the Load more link to load the next 1,000 values, and so on. To try this filter,
perform the following steps:

1.	 Import the source data from SSGFilter.xlsx into Power Query.

2.	 Each column header within the query has an active filter icon. This filter icon is
displayed as a drop-down arrow list that will populate when you click the icon. This
is exactly how you would use this feature in Excel.

154 Transforming Power Query Data

3.	 Click on the filter icon alongside the Division column heading. From the filter list
provided, choose Text Filters | Equals | Advanced.

4.	 We will now use the Advanced filter for the rows that are from the Soningdale
division And have a GROSS PAY greater than 213. Select DIVISION from the
Column category, set equals to Operator, and then click the drop-down arrow to
set Value to Soningdale. Make sure to check that the And condition is selected and
then select GROSS PAY for Column. Operator should reflect is greater than and
Value should be 213:

Figure 5.18 – Filtering rows using the And condition

5.	 Click on OK to see the results of the filter. The filter icon will now appear to the
right of the DIVISION column, indicating that a filter has been applied.

6.	 Let's add the Or condition to this filter to display the rows where DEPT either
equals Shewe OR Mankay Falls.

Basic column and row tools 155

7.	 Click on OK to view the results:

Figure 5.19 – Advanced OR filter

8.	 Your filter should now display 11 rows that meet the criteria entered:

Figure 5.20: The 11 rows with criteria satisfied

9.	 Close & Load your query result back into Excel.

You have now mastered filtering data using AND/OR conditions. The next section will
concentrate on extracting data from columns using single criteria.

156 Transforming Power Query Data

Creating single-criteria filters
In this section, we will learn how to create a single-criterion filter to extract data from a
column using Power Query. Let's get started:

1.	 Continue with the Excel worksheet from the previous exercise. Make sure you have
selected the Filter worksheet as the source data.

2.	 In cell L4, enter the column heading Division. Then, directly below the heading,
enter the text Soningdale. These two cells will form the filter for our example:

Figure 5.21 – Table criteria for filtering from the worksheet

3.	 Firstly, load the source data into Power Query and name the table SSGFilter. Click
on Close & Load. Name the worksheet SSGFilter.

4.	 Now, load the filter criteria and heading from the worksheet in cells L4:L5 into
Power Query.

5.	 To filter only for the Soningdale division at this point, we will need to drill down
to convert the table into a singular value to ensure that it only filters Soningdale.
Right-click on the text Soningdale and select Drill Down:

Figure 5.22 – Drilling down to a singular value for the filter

Basic column and row tools 157

6.	 The first row of the query has now been converted into the singular value for
Soningdale. Rename the Table4 query Filter:

Figure 5.23 – Drill Down feature

7.	 To connect the source data query called SSGFilter and the filter criteria called
Filter, we need to perform two steps. The first is to navigate back to the SSGFilter
query and create a filter on the Division column. Let's filter by Munerton. The
query has been updated to reflect only Munerton:

Figure 5.24 – Filter by division

8.	 Notice the results in the Division column.

158 Transforming Power Query Data

9.	 Secondly, look at the formula bar, where you will notice that the last part of the
M code refers to the filter ", each ([DIVISION] = "Munerton"))". Replace the
text Munerton at the end of the formula bar to reflect the filter criteria query you
previously created. Type Filter in place of Munerton. Now, you will see that the
Division column has updated to reflect our filter query criteria of Soningdale. The
formula bar will now read as follows:

= Table.SelectRows(#"Changed Type", each ([DIVISION] = Filter))

Note that we removed the quotation marks around the text as we are now referring
to a query:

Figure 5.25 – Formula bar showing the DIVISION column linked to the Filter query criterion

10.	 Close & Load the queries in Excel, placing both the Filter query and the SSGFilter
query next to each other on a worksheet named SSGFilter. The Filter query should
be in cells L4:L5 and the SSGFilter table should be positioned in cell A4.

11.	 To test the filter, type View Tabue into cell L5, then right-click over the SSGFilter
table and choose Refresh from the drop-down list provided. The data table's
Division column should update to reflect only the rows that contain View Tabue.

You are now confident in creating a single-criteria filter. This will allow any parameter to
be entered as a search criterion. In the next section, we will go one step further and look at
how to set up multiple-criterion searches.

Creating dynamic multiple-criterion filters
In this section, we will learn how to create a dynamic filter to extract data from multiple
columns using more than one filter condition within it using Power Query. Let's get started:

1.	 Continue with the Excel worksheet from the previous exercise. Make sure you have
selected the Filter worksheet as the source data.

2.	 In cell L9:L11, type in DEPT as the heading, with Mankay Falls and Cobrella as
the filter criteria directly below the heading.

Basic column and row tools 159

3.	 Click on Mankay Falls and use Get & Transform to import the data table into
Power Query.

4.	 The next step is to duplicate the FilterData query as we need to use this as the
source data for our multiple-criterion filter. We use the Duplicate option when
we want to use data from another query to create a new query with different code.
Right-click on the FilterData query and select Duplicate from the drop-down list
provided. Remove the last step, Filtered Rows, from the APPLIED STEPS pane.

5.	 To set the query so that it matches either Mankay Falls or Corbella, we will need to
join the two queries together using the Merge Queries tool using an outer join. The
result will return only those two departments and remove the rest of the data. Click
on the FilterData(2) query, and then visit Home | Merge Queries.

6.	 In the Merge dialog box, select the DEPT column from FilterData(2) and then,
from the drop-down list, select the Table5 query. We're doing this as we would like
to show only the matching rows from both tables:

Figure 5.26 – Inner join matching rows between two tables

160 Transforming Power Query Data

7.	 Click on OK to see the result. As indicated at the bottom of the Merge dialog box,
there are 18 of 27 rows matching from the first table and 2 of 2 rows from Table5:

Figure 5.27 – Inner join result

8.	 The APPLIED STEPS pane displays the last step as Merged Queries. Delete the
Table5 column, which was added to the data after the two tables were merged.
Select the column, and then press Delete on the keyboard or right-click | Delete
with the mouse.

9.	 To test the multiple query, change the DEPT criterion to Shewe and Slangsgrow.
Right-click over the table data and select Refresh to see the result:

Figure 5.28 – Multiple query result for Slangsgrow and Shewe

You should now have the knowledge to create a multiple-criterion filter to manipulate
data output. In the next section, we will look at how to remove duplicate rows of data
from a query.

Basic column and row tools 161

Removing duplicate rows
When we try to remove duplicate data from a table, we could possibly make a mistake
without realizing that we may be deleting the incorrect rows. This is especially relevant
when removing duplicate rows manually using the keyboard. Power Query includes the
Remove Duplicates option as one of its transform tools. Let's take a look:

1.	 Load the SalesData.xlsx worksheet into the query editor using Power BI. If
the Date column is imported as text, use the locale to convert it into date format
(right-click on the column, and then choose Change Type | Using Locale). Locale
is perfect when dealing with text files that contain dates and number formats from
different countries. You learned about this in Chapter 3, Introduction to the Power
Query Interface:

Figure 5.29 – Changing Locale

162 Transforming Power Query Data

2.	 We have noticed that there are duplicate sets of data in this sales report. For
instance, rows three and four of the table are identical. To remove duplicates, click
on Home | Remove Rows | Remove Duplicates:

Figure 5.30 – Removing duplicate rows

3.	 We started off with 57 rows of data. Now that the duplicates have been removed,
there are 54 rows left. Note that we did not select any columns to perform this
action. You need to be very careful as to which columns you have selected prior to
removing duplicates. For instance, if we selected the Region and Product columns,
and then selected Remove Duplicates, the result would be different. Experiment
with this now on the SalesData dataset.

Now that you know how to remove duplicate sets of data from a query, let's look at how to
replace null values in a query.

Replacing null values
To replace values in Power Query Editor, you will need to follow the same procedure that
you followed when replacing values using Excel:

1.	 Duplicate the SalesTeams query and rename it SalesTeamsNull. Remove the
APPLIED STEPS window until you see the raw data with null values. Click on a
null value to select it.

Basic column and row tools 163

2.	 Click on Home | Replace Values:

Figure 5.31 – Replacing null values
Null is already evident in the Value To Find placeholder as we selected the first null
value prior to clicking on the Home tab. Enter HR to finalize it in the Replace With
placeholder. Notice that Advanced options are also available at the bottom of the
dialog box so that you can select matching options and replace them with special
characters.

3.	 Click on OK to perform the replace action and view the results.

Here, we used the replace command to find values in a query and then replaced these
values with other values. You will now work with the header row options available in
Power Query.

Working with the header row
In Power Query, you have the option to Use the First Rows as Headers or Use Headers as
First Row. This should not happen often as you will typically import the data identifying
the first row as column headers from the start. However, some data sources will require
this step when you enter Power Query. Let's take a look:

1.	 Let's import SalesData1.csv into Power Query for this example.

2.	 After connecting the data source, you will see that the headers that are automatically
assigned are the defaults, namely, Column1, Column2, Column3, and Column4,
and that the actual headers are situated in Row1 of the table.

164 Transforming Power Query Data

3.	 To move the contents of Row1 so that you can display it as the header row of the
table, click Home | Use First Row as Headers.

4.	 The contents of Row1 are now displayed as the table headers.

In the next section, we will look at how to split columns in order to separate data from a
single column into multiple columns to aid the querying of data.

Splitting columns
You may ask yourself why we would want to use split columns in Power Query when we
have tools such as Flash Fill, Text to Columns, and formulas available in Excel. When
splitting columns in Power Query, as opposed to using the tools within Excel itself,
you are able to repeat the process and refresh it. Yes, you can refresh data when using
the formula options in Excel, but the complexity of dealing with varying widths of, for
example, text such as cities in a column is going to cause further problems.

The Split Column feature is located on the Home tab. Alternatively, you can reach it by
right-clicking over a column:

Figure 5.32 – Power Query split columns

Now that you have had an introduction to splitting columns, let's put this into practice:

1.	 Load the data from the workbook named SplitColumns.xlsx into
Power Query.

2.	 Select Column1 and go to Home | Split Column.

3.	 There are a number of choices to make from the drop-down list provided. For
this example, we will use the By Delimiter option, and then choose to split the
column by Comma:

Basic column and row tools 165

Figure 5.33 – Splitting columns by the comma delimiter

4.	 Make sure that the Split at option is set to Each occurrence of the delimiter. If we
do not choose this option, then only the first part of the data, before the comma, will
be split into a separate column. Because the data has three sets of commas separating
data, we need to make sure that each occurrence of the comma is identified.

5.	 Click on OK to view the results:

Figure 5.34 – Result of the comma split

6.	 Now, we can rename the columns to their appropriate headings and delete
Column1.2 as we do not need the parent field anymore; it will become the heading
for Column1.3. There is one more thing we need to do: Column1.4 needs to be
split as well as it contains a code and a number. There are spaces in between the
code and number that we will remove by splitting the columns by position. Click to
select the last column and then choose Split Column | By Positions.

166 Transforming Power Query Data

7.	 Power Query will look at the column and assume the positions according to the
data in the column. In this case, the assumption is correct. Spend some time
investigating positions as this tool is very useful:

Figure 5.35 – Split Column by Positions

8.	 Click on OK to see the changes. There are now two columns, one for the code and
the other for the number. You will notice that the 0s were dropped from the first
column data. This is because the column data type was altered automatically from
text to number. If you prefer to display the 0s at this point, simply remove the last
step, Changed Type1, from APPLIED STEPS.

When using Split Column by Delimiter, you need to be aware that when refreshing the
query, the new data may not automatically appear due to a setting in Split Column by
Delimiter | Advanced options, as shown here:

Figure 5.36 – Clicking the gear icon to change the Advanced options column setting

Merging and appending tools 167

Once you have created the query, click on the gear icon for the Split Column by Delimiter
step in the APPLIED STEPS pane to view the criteria that Power Query automatically
assumed on creation. If we look at the underlying table from which we created the split
column query, the data was separated into four parts using the comma delimiter, and
therefore split according to four columns. When the source data is updated via the Refresh
option, it may not include the now new fifth piece of data. To correct this, locate Advanced
options and set the Number of columns to split into setting to the new number of
columns according to the source data. It will then refresh the data automatically.

Now that we've learned how to split columns, we will look at the merge and append tools
available in Power Query.

Merging and appending tools
In this section, we will understand how to combine, merge, and extract data from sources
within Power Query. These are extremely powerful and useful tools that can be used to
transform data.

Merging columns using combine
We can merge data sources or data tables whose structures are totally different from each
other. The only thing we require is a relationship between the sources. This is normally a
common field that relates one field in the first data source to another field in the second
data source. This concept is exactly the same as working with primary keys, relationships,
and joins in Access 2019.

If we have a list of student data in one table and data related to fees that have been paid per
student in another table, we can merge them to flatten the data into one table. The Merge
tool offers you the ability to select a common field and create a relationship between the
two tables so that data can be combined into a single flattened data table. Let's get started:

1.	 Create two queries from the STUDENTS and YEARLY FEES data tables, which are
located in the SSGSchoolAdmin.accdb data source.

2.	 Rename the Students2 query StudentList. Both tables include a common,
related field called Code. We will use this field to create a link between the
two tables.

168 Transforming Power Query Data

Click on the StudentList query and then go to Home | Merge Queries | Merge Queries
as New:

1.	 In the Merge dialog box that populates, select Code from the STUDENTS table,
which will be the column you will use as the joining field. From the second drop-
down list, select the YEARLY FEES table, and then click on the Code column to
identify it as the matching join. The joining fields do not have to have the same
column heading. Should you have more than one matching column, you simply
select them in the order you wish to perform the merge by using the Ctrl + click
method. A value in sequence is then placed next to each matching column. You are
also able to select a Join Kind from the drop-down list provided. The most common
is Left Outer (all from first, matching from second), where it will match all the
fields from the first table and match them from the second table:

Figure 5.37 – Merge by matching columns

Merging and appending tools 169

2.	 Click on OK to confirm the merge.

3.	 A new query called Merge1 will be created, along with the result. If you scroll to
the very right of the table, you will notice that the YEARLY FEES column has been
included. This column is called a structured column as it has a structure (table)
in every single cell that, when we click on the blank area (not the word Table) of
the cell, will display a further table. So, this shows that Student 1005 has made two
payments toward YEARLY FEE TOTAL:

Figure 5.38 – Student 1005 displaying two payment entries

4.	 We need to go one step further by combining the data to flatten the structure, as
Power BI will not understand the concept of a table within other tables. Click on the
Combine Files icon located to the right of the YEARLY FEES column heading. The
Combine Files option is also available from the Combine group, which is located
on the Home tab ribbon:

Figure 5.39 – Combine icon to flatten the structure of a table within tables

170 Transforming Power Query Data

5.	 Click to select which fields you would like to include in the combine process:

Figure 5.40 – Fields to be added for combining
For this example, we will use all the fields. Click on OK to confirm this.

6.	 The tables are combined into a single table, ready to be analyzed in Excel or
Power BI.

With that, you have learned how to use the Combine tool to merge tables together
using a primary key. In the next section, we will learn how to merge multiple columns
into one column.

Merging text and values into one column
When using this tool, it is important to note that the order in which you select your
columns is important. For instance, if your mouse's focus is on a particular column in the
query, that column will appear first in the merge result. Merging multiple columns into
one column, separated by a delimiter, will cause the source columns to be lost. Always use
the Shift + click method to highlight columns from one point to another as they will then
be merged in that order, unless you are purposefully selecting random columns to define
the order. Let's see an example of this:

1.	 Use a copy of the StudentList query for this example. Once you have created a copy
of StudentList, you will see that the query name has changed to StudentList2.

2.	 To combine certain columns into one single column, we need to select the columns
to merge. We will merge the Grade and Class columns. If we select the class column
before the grade column, the display order will be incorrect.

Merging and appending tools 171

3.	 Select the Grade columns, and then the Class columns. Click to select
Transform | Merge Columns:

Figure 5.41 – Using the Merge Columns tool

4.	 In the dialog box provided, choose the Space separator and give the new column
a name if you wish. We can change this after the merge if we need to. The default
name will be present in the dialog box, namely Class.1:

Figure 5.42 – Merge Columns dialog box showing the Space separator

5.	 The columns are merged together with a space separator in between the grade
and class data.

In this section, we learned how to merge selected columns in a query and how to use the
Space separator to produce a new column within a query. In the next section, we will learn
how to combine two sets of data sources in a single query.

172 Transforming Power Query Data

Appending (combining) tables
In this section, we will learn how to combine two data tables together. This can be applied
to two different data sources or different data tables. It is also referred to as a union and is
just like how we would combine using relational databases or SQL. This tool is great for
combining, for instance, multiple student course lists into one dataset. The data will need
to meet the following guidelines:

•	 The structure should be identical, as well as the column headings.

•	 You need to have at least one column in a table that matches another column in a
separate table/worksheet.

•	 There can be foreign columns in either table, but the best practice is to make sure
that the majority of the columns are the same.

To see how this works, we have to do a bit of setup.

Create two separate queries in Power Query from the worksheets in the
ChoclatoFlakSalesNW.xlsx workbook. The following screenshot displays the
two queries, SSGProductsEast and SSGProductsWest, that have been imported into
Power Query. These queries contain data for our company in the East and West. The tables
are similar with regard to column headings, except the East has an additional column
called Division:

Figure 5.43 – Query results in Power Query

Merging and appending tools 173

Notice that both tables have two extra columns at the end. We can remove these two tables
to tidy our dataset. We would like to combine the queries into one table. Let's get started:

1.	 Select one of the queries. Then, go to Home | Append, where you will select
to either Append Queries or Append Queries as New. If you choose Append
Queries, the existing queries for East and West will no longer exist and the result
query will be created by combining the two queries together. Append Queries as
New will give you the opportunity to keep the West and East queries as-is and create
a brand-new combined query.

2.	 For this example, we will Append Queries as New. The Append dialog box will be
populated, where you will see the description to concatenate rows from two tables
into a single table. If you are combining three or more tables, this option is available.
The Primary table has already been inserted for us. Select SSGProductsWest from
Table to append to the primary table from the drop-down list provided:

Figure 5.44 – Append as new dialog box

3.	 Click on OK to see the result.

4.	 A new query is evident in the Queries pane. It should be named Append1.

174 Transforming Power Query Data

5.	 Since we had one query with an additional column, there will be some Null values
in our result. Simply clean the data by removing any blank rows. Make sure you
have selected the Append1 query, and then click on Home | Remove Rows | Blank
Rows. You should now have 84 rows in the result (42 rows from the West and 42
rows from the East). Do not forget to save and apply the changes.

Note
The Division column has included data for the East salespeople but nothing for
the West as the column did not exist in the underlying West query. A note to
remember is that Append will not remove duplicate rows – if you have exactly
the same row (with the same data) in both tables you are combining, it will
not remove the duplicate. So, check your data after appending and remove any
duplicate records.

6.	 Make sure that, after appending the underlying queries, SSGProductsEast and
SSGProductsWest are set not to load. You will gain greater performance from the
model and save memory. You do not need all three queries to load into Power BI,
only the resulting query. Right-click on the SSGProductsEast query and select
Enable load to deselect it:

Figure 5.45 – Disabling loading the query into Power BI

7.	 When removing the Load to Power BI option from a query, a notification window
will appear, indicating that you could lose data during this process:

Figure 5.46 – Notification of data loss when disabling Load to Power BI

Grouping data 175

8.	 Click on Continue. The queries now have an Italics attribute assigned, which
indicates that these queries will not load to Power BI, but they will still continue
to be refreshed.

Now that you know how to append tables from different sources into one query, we will
look at grouping data according to different criteria.

Grouping data
In this section, we will learn how to group data from a table within Excel Power Query
by specifying columns to group by and select the operation to perform as a new column.
Group By in Power Query is very much like the Group By option in SQL.

We will use the SalesData1 query to group the region and find the sum aggregate of sales
for each region:

1.	 Select the SalesData query in Power Query and duplicate it. Rename the query
SalesGroup.

2.	 Click on Home | Group By.

3.	 We will first complete a Basic example. Click on the drop-down list located
directly under Basic and make sure Region is selected. Set New column name to
RegionSales and choose an operation to perform. The column to select to obtain
the total sales for each region would be Sales in this case:

Figure 5.47 – Group By dialog box

176 Transforming Power Query Data

4.	 Click on OK to view the result:

Figure 5.48 – Result of sum of sales per region

5.	 Let's see how the Advanced Group By feature works. This time, import the
SalesDataAdv.xlsx data source into Power Query.

6.	 Click on Home | Group By.

7.	 This time, select the Advanced option.

8.	 Use Date and Product as the columns to group by. Enter a New column name
called DateProductCount, and then choose an Operation (for this example,
we will count the rows as we would like to see how many products were sold on
each date):

Figure 5.49 – Entering the Advanced Group By criteria

Working with extraction tools 177

9.	 Click on OK to view the results:

Figure 5.50 – Advanced Group By result

The number of products sold on each date is added as a new column to the query. If
you would like to edit the criteria, simply click on the gear icon to the right of the last
applied step.

In this section, you learned how to group data in Power Query. We will now work with the
various extraction tools available in the interface.

Working with extraction tools
At some point, you may have a very large table and need to create a number of separate
Power Query tables out of the data source. The extract tool is perfect for this purpose.
I need to mention here that there are many methods to achieve this, such as creating a
duplicate query, and then deleting the columns you no longer require. We will also use the
extract tool to extract the age of a student from a date in the query.

Extracting an age from a date
In this section, you will use Power Query to extract the age of employees from a
date column, transform the time format into total year format, and round down
the age column.

The first example we will look at is to extract the age of students from an enrolment list:

1.	 Import the student data table from SSGSchoolAdmin.accdb into Power Query.

2.	 Since the DOB column was converted into the Date/Time format type on import,
format the DOB column to the Date data type.

178 Transforming Power Query Data

3.	 Select the DOB column. Then, click on Add Column | Date | Age:

Figure 5.51 – Date to Age

4.	 The age column is presented to you as a time data format.

5.	 You now need to transform this into the year format. Click on Transform |
Duration | Total Years.

6.	 The last step is to round the years down to the age. Locate the Number Column
group on the Transform tab. Click Rounding | Round Down to complete
this process.

7.	 Save the query.

You will now be confident in extracting an age from a date column in Power Query using
the Transform option. In the following section, we will learn how to extract a column
from a range.

Extracting columns
Let's use the extract tool to remove a column from a range in Excel using Power Query:

1.	 Open the Excel workbook named SafestSolutions-Law.xlsx.

2.	 You will notice that Sheet2 contains a query that's already been set up using Power
Query. Visit the Queries & Connections pane to view the query. Right-click on the
query and choose Edit, after which you will return to the Power Query editor.

3.	 We will now extract the CASE NO column from the query and turn it into a list
(which consists of one column). If we take a look at Advanced Editor, we will see
that the Source statement refers to the current workbook and that Output refers
back to the source. We will now change Source so that it reflects only the column
we require. Do this by extracting the CASE NO column.

Working with extraction tools 179

4.	 Click into the formula bar, and then edit the syntax so that it reads : =
Source[CASE NO], meaning that it no longer refers to the entire table but only to
the CASE NO column. You are also able to edit Source by editing the code directly
in Advanced Editor.

5.	 Click on the enter tick to the left of the formula bar to accept the changes:

Figure 5.52 – Extracting a column in Power Query

6.	 You have now created your first column extract! The column is presented as a list.

7.	 Now, you can perform another step by converting the list into a table using the To
Table option on the Transform tab. Close & Load the results to the Excel workbook
when you are done.

Now that you've learned how to transform data within a query to extract columns, we will
concentrate on the various options we can use to extract values using delimiters.

Using the extract column features
The Extract feature in Power Query has a multitude of options we can use to manipulate
parts of a string in a data source to produce an output. We will learn where to locate this
feature and how to use it to extract data from a column. Let's get started:

1.	 The scenario is that I have been sent a list of serial numbers from which I need to
extract a certain part of the serial number to use in another query.

2.	 Open the workbook named SerialNo.xlsx and import the table into
Power Query.

180 Transforming Power Query Data

3.	 Click on Transform | Extract to view the options available:

Figure 5. 53: Transform data using Extract tool

4.	 We would like to extract the values in the middle of the serial number. Choose Text
Between Delimiters from the list provided. This option will allow us to extract the
numbers after and before the two dashes in the sequence.

5.	 Enter a dash as Start delimiter and a dash for End delimiter, and then click on OK
to view the result:

Figure 5.54 – Text Between Delimiters extraction

Working with extraction tools 181

6.	 Click Close & Load to send the results back to Excel:

Figure 5.55 – Result of Close & Load to Excel
Let's try another option. Click on Sheet1 of the workbook and import the range to
create a second query in Power Query.

7.	 This time, we will use the Range option to select a certain start and end point of
the data. As Starting Index, enter 4 to get rid of the first four characters in the
sequence. For Number of Characters, enter 9, to keep the nine characters that
appear after the first four characters, and remove anything after 9:

Figure 5.56 – Extract Text Range options

8.	 Click on OK to view the results, and then choose Close & Load to send the query
back to Excel.

You have now learned how to use two different extract text options. Experiment with the
other options in the list as they are all very useful when dealing with simple and complex
data extractions.

182 Transforming Power Query Data

Summary
In this chapter, you have been taught how to use the pivot tools to structure data
correctly for analysis by being shown how to transform rows in order to display them
across columns and vice versa. We had a look at the theory behind the Refresh option to
understand the sequence of refresh, how to refresh, and its pros and cons. In the column
and row tools section, you learned how to clean data by removing top or bottom rows
from a table, removing duplicate rows, and replacing null values in a table and adding a
header row. You also learned how to remove certain columns if you do not require them
for analysis purposes and how to add an index column to act as a row counter that aids in
data analysis. You are now able to meet a set of query conditions by creating a conditional
column using the if…then…else statement. You consolidated your knowledge of
filtering in Excel by learning how to sort and filter using the AND/OR statements, as well
as how to create a dynamic multiple-criteria filter to extract data. With that, you can now
split data based on delimiters.

We then spent some time mastering the extraction tools in order to combine column data
or merge text and values into the same column and then moved on to understand how
to group data within Power Query using the basic and advanced options. The chapter
concluded by learning how to extract an age from a date by adding an age column and
extracting a part of a serial number from an existing column.

In the next chapter, we will be working with advanced queries and functions, learn how to
write If functions, and learn how to create parameter tables. We will discover a number
of functions, such as Modolo and Index, append multiple files and tabs by creating new
columns from filenames, and also do the same with sheet tabs using multiple data files.

6
Advanced Power

Queries and
Functions

This chapter concentrates on the more advanced queries and functions in Power Query
such as the IF, Index, and Modulo functions. With these, you will be able to transform
a range in Excel with no formatting into a highly customized table with only the relevant
information that you require for your query.

You will learn to create parameters to alter query paths and append multiple files and
sheet tabs. When using this, it will allow you to easily change the query paths without
leaving Excel, which will then change the data source paths so every month you can add
in your new data in a monthly folder and run the query instantaneously.

In this chapter, we're going to cover the following main topics:

•	 Writing an IF function in Power Query
•	 Creating a parameter table for queries
•	 Creating Index and Modulo functions
•	 Appending multiple files
•	 Appending multiple tabs

184 Advanced Power Queries and Functions

Technical requirements
You need an internet connection to download the relevant files from GitHub. Also, the code
files for this chapter can be found at https://github.com/PacktPublishing/
Learn-Power-Query/.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=QSTjKk1MeKY&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=7&t=0s.

This chapter assumes that you already know how to write basic IF, OR, and AND formulae
in Excel. It is also important that you know how to load data into Power Query and how
to add custom columns.

Writing an IF function in Power Query
Although writing an IF function might appear very different from the way that you
normally write a formula in Excel, once you master it, it does get pretty easy. You might
even find it easier than writing the formula in Excel.

Refer to the following screenshot of the spreadsheet:

Figure 6.1 – Basic spreadsheet before editing

https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://www.youtube.com/watch?v=QSTjKk1MeKY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=7&t=0s
https://www.youtube.com/watch?v=QSTjKk1MeKY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=7&t=0s
https://www.youtube.com/watch?v=QSTjKk1MeKY&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=7&t=0s

Writing an IF function in Power Query 185

In this example, we are going to pretend that we have a spreadsheet and we would like to
work out whether the placed order has been delivered. When looking at the spreadsheet,
we currently do not have a place for this column and although we could add it in Excel
straight away, I am going to do this in Power Query. One of the reasons for doing this
is that this sheet might be a template from the company and we would have to add the
column every time we wanted to do the query. By adding it in Power Query, it will
automatically do this to any additional query with the same template.

We want to look at the delivery date and see whether the order has been delivered. If the
order has not been delivered, we will want this flagged. We will need to add a new column
called Delivery Status.

To load the Excel range into Power Query, we will convert it into a table and then
select From Table/Range in the Data Tab, as shown in figure 6.1. Now, refer to the
following screenshot:

Figure 6.2 – Power Query Editor

Note
The loading of Excel ranges has been covered in Chapter 2, Power Pivot Basics,
Inadequacies, and Data Management, if you are not sure how to do this.

186 Advanced Power Queries and Functions

In the Power Query Editor, select Conditional Column from the Add Column tab. This
will bring up the Add Conditional Column dialog box, which will allow us to add in our
custom column, shown as follows:

Figure 6.3 – Completed conditional column

As shown in figure 6.3, when looking at the completed dialog box, you can see how our If
statement works. If the Delivery Date does not equal null, Then say it is Completed. If it
is null, then say null. Once this has been completed, select OK.

We can see that the new Delivery Status column now has either null or Completed as the
two options in this field:

Figure 6.4 – Delivery Status column added

Writing an IF function in Power Query 187

Tip
If you wanted to move the column to a different place, you can select the
column and move it in the same way that you move a column in Excel.

When we look at the M code in the Advanced Editor, you can see the formula that has
been written is similar to Excel but has a few other rules. Refer to the following screenshot:

Figure 6.5 – The M code in the Advanced Editor

When you are using the GUI Power Query Editor, it is really easy to create additional
columns. Sometimes, however, it is not as easy as this and we will then have to write the
formula ourselves.

Note
The difference between writing an Excel formula and a Power Query formula is
as follows:
Excel=IF(test, ValueIfTrue, ValueIfFalse)
Power Query =if test then ValueIfTrue else ValueIfFalse

You will notice that there are no brackets or parentheses in Power Query, but
you do need to use the words then and else.
If in Power Query is in lowercase and null means blank in Power Query.

When looking at figure 6.5, you might notice that if a person comes to pick up their
order in the store, it does not show this as being delivered. As a result, we will need to
change our if statement to an if or statement to show that the order has indeed already
been delivered.

188 Advanced Power Queries and Functions

To make this change, we will need to do the same thing as before and add a custom
column. The only difference with this is we will have to write the M code and we will not
be able to use the GUI interface. Follow the same steps as we did earlier in this section and
when you get to the Power Query Editor, click Custom column, shown as follows:

Figure 6.6 – Custom Column

You can now start typing the following in the window that has opened:

if [Delivery Date] <> null or [Order Type] = "In Store
Pickup" then "Completed" else null

Writing an IF function in Power Query 189

I find that this is easier than writing everything; you can double-click on the columns that
are available on the right, which will then insert that column name into the formula. Refer
to the following screenshot:

Figure 6.7 – Available columns

190 Advanced Power Queries and Functions

When we look at the formula we have typed in, it says that if the Delivery Date is not
blank or the order type is In Store Pickup, then it needs to say Completed; otherwise, it
needs to leave the cell blank. Refer to the following screenshot:

Figure 6.8 – The completed AND IF function

The steps are separated by the word or, making this easier to read (see figure 6.8).

The if statement in the Query Editor allows you to create basic functions through
the GUI, and it allows you to make more powerful functions when you write your own
code. Although there is some similarity to Excel formulas, there is a slight difference,
but when reading the M programming language, it does become apparent what the
formula is doing.

In this section, we added an additional column that we needed. The next section will show
how we can easily create a custom or updated path for our data source so we can update
our query without leaving the Excel table.

Creating a parameter table for queries 191

Creating a parameter table for queries
When we design a query for something specific, for example, a monthly sales query, we
would generally create it for that month. The following month, we would want to use the
same query but have a different source document. Naturally, we would not want to redo
the entire query but just change the query for that specific month. So, in this way, we can
make the necessary additions to the query to make our lives easier and create a parameter
to the query.

I am using the same Excel files from Chapter 4, Connecting to Various Data Sources using
Get & Transform. The following is a CSV file that I have opened and I have connected it
to a query:

Figure 6.9 – Imported CSV file in the query

When you edit the query, you will see that it is a simple one with mostly the default steps.
The only thing I have added is that I have changed the Sales column to the currency type.

192 Advanced Power Queries and Functions

If you click on the gear icon on the right-hand side of the source in the APPLIED STEPS,
it will open the PROPERTIES window. Refer to the following screenshot:

Figure 6.10 – The properties of the source file

In this window, you are able to see the File path of the source document and the type of
file as well as what the delimiter is.

At this time, the file or value is hardcoded into our query. This means that when we open
this query, it will always attempt to open this file in the current location.

We will create a new parameter called FilePath, which will allow us to change this
parameter every month. Click on Manage Parameters and then select New Parameter, as
shown in the following screenshot:

Figure 6.11 – Manage Parameters

Creating a parameter table for queries 193

This will open the Parameters window, as follows:

Figure 6.12 – Parameters window

In the Parameters window, type in the name of the parameter, (FilePath); select Type
as Text, as this is a text-based parameter; and lastly, in the Current Value, type in the
current file path and the name of the file.

Once completed, click on OK and you will now see the new query on the query pane on
the left, as shown here:

Figure 6.13 – New FilePath query

194 Advanced Power Queries and Functions

When you click on the Data query in the query pane, it will take you to the same screen as
figure 6.10. When we click again on the gear icon on the right-hand side of the source in
the APPLIED STEPS, it will open the PROPERTIES window again. What we are going
to do is change the path from the existing file path (C:\Users\...\parameter\
Files\csv files\2019 Nov.csv) to the Parameter Filepath, as shown here:

Figure 6.14 – New Parameter filepath

Creating a parameter table for queries 195

One of the things you will need to do is change the URL Text to Parameter. I find it
easier to select Parameter and then select the Filepath parameter I need. Once you have
completed this, you can click Close and Load, which will load the query into Excel. Refer
to the following screenshot:

Figure 6.15 – The query table connected via the Filepath parameter

You will now notice that the query is still connected to the same file, but it is now
connected via a parameter instead of a direct link.

196 Advanced Power Queries and Functions

Changing the monthly data source
We are now going to pretend that this is the next month and we would like to use the
existing Power Query template, but we now need the new month's data. So, we now need
to make some changes; please refer to the following screenshot:

Figure 6.16 – Edit FilePath

We first click on EDIT from the Filepath parameter when you hover over the Queries
& Connections window. This will open a window that will allow you to change the
Filepath parameter by selecting the Manage Parameter icon, shown as follows:

Creating a parameter table for queries 197

Figure 6.17 – Manage Parameter

Once you have changed this to the new file, simply select Close and Load when you are
finished and this will then display your new data.

Although this is relatively easy every month to change your Filepath parameter, it is a bit
time consuming to open the Query Editor and then change the parameter. It is possible to
create a table of parameters, which will shorten the process. Let's see how this is done:

Figure 6.18 – Table of parameters

198 Advanced Power Queries and Functions

I have created a simple table called Parameter, which has a Parameter column and the
Value of the folder, which has the value of the filename. We are going to link our existing
query to the parameter table. This will allow us to change the values in the parameter table
and then will automatically update the query. Let's see how:

1.	 We will need to create a new query by selecting Get Data | From Other Sources |
Blank Query.

I am going to rename my new query fParameter. This is going to be the function
name that I am going to use to call the values from a parameter table. (I am keeping
the same format as I have done in the previous chapters.)

2.	 Then, click on Advanced Editor in the View tab and delete all of the default
information that comes up. You will need to replace it with the following
code snippet:

let Parameter=(TableName, ParameterLabel) =>

let

	 Source = Excel.CurrentWorkbook(){[Name=TableName]}
[Content],

	 value = Source{[Parameter= ParameterLabel]}[Value]

in

	 value

in Parameter

This is a query function and when you look at the code, it takes two arguments, namely,
TableName and ParameterLabel, and connects them to our table. In the Parameter
column, we are going to use a lookup and then return that value in the Value column.
Once completed, click on Done:

Creating a parameter table for queries 199

Figure 6.19 – Creating the parameters

We will need to alter the FilePath that we created before and insert additional code so that
we are able to change the table in Excel and it will then automatically update.

From the current window, select the Data query and then select the source step. We are
going to delete the FilePath parameter and insert additional code:

Figure 6.12 – Changing the FilePath parameter

200 Advanced Power Queries and Functions

Delete the FilePath parameter from the code in the toolbar, but do not delete the
parentheses, (). Copy the following code and insert it in place of FilePath:

fParameter("Parameter", "Folder") & "\"&
fParameter(Parameter", FileName")

From the preceding code, we are calling the ParameterTable parameter and our folder
path and then we are going to append this to FileName from ParameterTable.

Once you have finished, click Close and Load, which will bring you back to the table in
Excel. You can now change the Folder path and the FileName of the various files and after
you refresh, the data it will then load that file, as shown here:

Figure 6.13 – Change the data in the Parameter table

Using the parameter tables allows you to quickly change the file from the current one
without having to go and edit the data source every time.

Using the parameter tables works really well if your table is formatted correctly, but
many times, you will have to format the table in Power Query before you can use
parameter tables.

Using the Index and Modulo functions, we are able to remove the information we do
not need. So, we will study these in the next section.

Understanding the Index and Modulo functions 201

Understanding the Index and Modulo
functions
In this section, we will be looking at the index and modular functions. These tools allow us
to remove rows and create additional rows that we can order, which will assist in filtering
the relevant data that we need. We will also explore how to rename and delete steps, which
will make it easier to understand which step is associated with what it is doing.

Beginning with the modulo function
Before we start looking at the MOD function, it might be beneficial to explain what it
is and how it can be used. Modulo is a term used in computing and mathematics that
works out the remainder after you have divided a number by a different number. For my
example, let's say that we are going to divide 11 by 4. This would give us an answer of 2
with a remainder of 3. This could be very practical in a class situation if you have to divide
a class of students into groups of a specific number. Using the formula =mod(A3, B3) in
cell C3, this will give you a result of 1. This means that 1 student is left over and could not
fit into a group. We have represented this in the following screenshot:

Figure 6.14 – A MOD example

Although this seems a bit basic, we can expand this, as we can use MOD with other
formulae, such as Sum and Column.

202 Advanced Power Queries and Functions

Let's have a look at the following table of sales. I am going to pretend that we want to find
out the sales of every even month:

Figure 6.15 – Table of sales

The formula that I am going to use is =SUM(B2:G4*(MOD(COLUMN(B2:G2),
2)=1)). The COLUMN returns the column number; these are the numbers in bold that are
above the column names of each column. The MOD function divides the column number
by 2, hence column 4 divided by 2 has the remainder 0 and the answer will be 0. Column
5 divided by 2 will give a remainder of 1, hence 1 will be the answer. If we wanted to
change our query to every 3 months, we can change the number 2 to 3. We will either
have an answer of 0 or 1 for each column. If there is a remainder, then the formula will
become 1 = 1, which is true and we will then add those columns together.

Note
If you are doing this, then do not press Enter when you type in the formula.
You will need to press Ctrl + Shift + Enter at the same time as this is an array.

Now that we understand how MOD works in Excel, let's have a look at how we can use this
in Power Query.

Sometimes, we will have files that have not been formatted the way we want them to be. It
could take ages to get rid of all of the irrelevant information. The following is an example
of a file that is a record of all of the sales for December 2019:

Understanding the Index and Modulo functions 203

Figure 6.16 – Monthly End Report file

Using Power Query, we will be able to get this in a format that we can use.

Start by selecting everything on the page, including the header at the top, and select From
Table / Range in the Data tab. Create the table from the Create Table window and select
OK, which will bring up the following screenshot:

Figure 6.17 – The data in the Query Editor

204 Advanced Power Queries and Functions

Here, among other features, let's see how we can remove the top four rows as we do not
need any headings for the table. Click on Remove Rows and Remove Top Rows and then,
in the Remove Top Rows window, type 4 and press OK, as shown here:

Figure 6.18 – Delete the top four headings

Understanding index functions
A very powerful feature of Power Query is to use an index column, which serves as a row
counter for all of our data. We would like to add an index in the Modulo function so that
we can work out how many rows there are before the information repeats itself.

To add an index column, select Index Column from the Add Column tab. You are given
options: whether you would like the index column to start From 0 or From 1 or whether
you would like to create a Custom column. For this exercise, I have selected it to start
From 0, as seen in the following screenshot:

Understanding the Index and Modulo functions 205

Figure 6.19 – Insert the Index Column

When looking at the following screenshot, you will notice that the first Order Number
starts at row 1 and then the next record starts at row 5:

Figure 6:20 – Working out the number

206 Advanced Power Queries and Functions

This is where the modulo comes into effect as we can use this function and tell Power
Query how many rows there are before the function repeats itself. In our case, there will
be 4 as there are four rows before the data repeats itself:

Figure 6:21 – Insert the Modulo column

When looking at the Modulo column, you will notice how each new record starts at
number 0. The other important thing is that each number is going to represent a particular
item, for example, the Number of Customers, as shown in the following screenshot:

Understanding the Index and Modulo functions 207

Figure 6:22 – The modulo added

We are going to use an IF function and the Modulo column to create additional columns
for each of the fields that we would like, for example, Order Number, Product Sold, and
so on.

We are going to start this by creating a new custom column by selecting Custom Column
in the Add Column tab. The first thing we want to find is Order number, so we can
use this as the New column name. In our IF statement, we are saying that if the modulo
number is 1, then this is the customer number.

The code that we will write is as follows:

= if [Modulo]=1

then [Column1]

else null

208 Advanced Power Queries and Functions

When we click OK, we notice that we now only have a number in this column for the
order number. We are now going to do exactly the same process for the other columns,
namely, Product and Sales Person. The Product Sold formula would be as follows:

if[Modulo]=1

then [Column3]

else null

This will give us the following result:

Figure 6:23 – The first three columns

When we continue with this, there will be a slight change for the next three columns; we
will change the Modulo number to 3, instead of 1, as we are looking at a different row.
Our formula for the Number of Customers will be as follows:

if [Modulo]=3

then [Column1]

else null

Understanding the Index and Modulo functions 209

If at any time you have made a mistake, you can delete the step and then redo it, but it is
easier to click on the gear icon on the right of the applied step and then change the value
in the Add Conditional Column window:

Figure 6:24 – The Add Conditional Column window

Once we have completed everything, we will have all of the additional columns that we
now require:

Figure 6:25 – The completed additional columns

210 Advanced Power Queries and Functions

At this stage, we have all of the columns we need, but we will need all of the information
in a specific row. We are going to try and get all of the information in one of the
modulo rows.

To make our lives easier, we can rename the APPLIED STEPS by right-clicking on each
applied step, for example, Added Column5, and then selecting Rename:

Figure 6:26 – Renaming the different steps

Understanding the Index and Modulo functions 211

Select all of the new if functions columns. (You have to press and hold Ctrl to
select multiple columns.) Then, right-click and select Fill | Down, as shown in the
following screenshot:

Figure 6:27 – The Fill Down menu

212 Advanced Power Queries and Functions

As we only need the information that is in Modulo row 3, we can filter the Modulo row to
show just column 3, as follows:

Figure 6.28 – Filtering the Modulo row

We can now select the columns that we want to show by selecting Choose Columns on
the Home tab and selecting the new columns we have created:

Figure 6.30 – The filtered rows

Understanding the Index and Modulo functions 213

Once completed, we can click Select and load or select and Load to … . When you look at
the following completed table, we can see that we can work with it easily and analyze the
data without any problems. Of course, for data from the following month, all we have to
do is change the source and everything will already be done:

Figure 6.31 – The completed table

You will agree that this is much easier for us to analyze than the spreadsheet that we
started with. Although it took us a little while to set up, it will save us hours every time
we have to redo this. This is the beauty behind Power Query: once you have set it up,
everything else can be automated.

Lastly, if there are any steps performed incorrectly, we can always delete them.

Up to this point, we have been looking at merging existing files together, but sometimes
we will want to append files, which is slightly different from what we have been doing
before this. In the next section, we will see how to append them.

214 Advanced Power Queries and Functions

Appending multiple files
There are two different ways in which we can join tables in Power Query or Power BI,
namely, merge or append. In computer science, append means to add to an existing file
and not overwrite anything that came before.

This goes beyond here, as even in our merge queries that we have done before this, we
have had a primary or relationship key that has allowed us to create new columns or fields.
When we append something, it comes underneath everything else that has gone before.

In Power Query or Power BI, when we append files, we will end up with a query that is
made up of two or more queries. As an example, we have the following two different tables
in different workbooks. We are going to append these files so that they are underneath
each other:

Figure 6.32 – Two different tables to be appended

We are also going to go a step further in this example, as we would like to load the two
Excel files, but we will also load a CSV file. Let's see how to do this:

1.	 Open Power BI and load the queries into it and then select any of the queries to
open. It does not make any difference what type of data source you are loading
when adding to the data model.

2.	 On the top-right, click on Append Queries, which is below the Merge Queries tab:

Appending multiple files 215

Figure 6.33 – The Merge Queries and Append Queries tabs
The option is to either Append Queries or Append Queries as New. The difference
is Append Query as New retains the query result as it is already loaded and allows
you to create a new query based on this, while Append Queries starts the query
with no steps included. As we already want the tables with the steps, we are going to
select Append Query as New.

3.	 After selecting, the Append window will be displayed as follows:

Figure 6.34 – The Append window

216 Advanced Power Queries and Functions

Depending on how many queries you would like to append, there is a difference in
how the process works. If you only need to append two queries, then we can select
the primary and other tables that we require.

The primary key is normally the table or query that you selected first, but it could also
be the main table that you would like to be on top. Refer to the following screenshot:

Figure 6.35 – Select the tables to append

As we see in the preceding screenshot, we are going to append three different tables so
that we can go through the more advanced options, which is only one step.

Select the different tables on the left and then add them by clicking on the Add button,
which will move the tables to the right:

Appending multiple files 217

Figure 6.36 – The Append1 query

The new query, which has been called Append1, has simply appended the different
queries row after row and as the column rows were similar in the various queries, the new
query, Append1, has the same columns.

There was one query (the SA query) that had an additional Department column in it, and
this has created a null for each of the other queries that did not have the relevant column.
So, here, we have the null shown in the Department column for our Append1 query:

Figure 6.37 – The null Department column

218 Advanced Power Queries and Functions

We have the option of either deleting this column or creating a merge with the other
queries. Append queries does not remove duplicate rows. So, we would need to use
Group By… or Remove Duplicates by right-clicking to get rid of duplicates, shown
as follows:

Figure 6.38 – Use of Remove Duplicate and Group By...

Note
Power Query and Power BI use the column names to combine the data from
the different tables. Your first table is the primary or the template that is used
to combine the other tables. If the other tables have more columns than the
template, they will be ignored and if the other tables do not have the same
columns as the template, Power Query and Power BI will add null to this row.

The columns do not need to be in the same order as Power Query and Power
BI use the column names to merge or append the data.

Appending multiple files 219

We can now Close and Apply and load this into Power BI for this to be easily analyzed:

Figure 6.39 – Completed Append1 data

When we append files, Power BI or Power Query looks at the column names that are the
same. If it finds a column name that is the same, then it adds all of the different rows'
data into this column. If there is a column that does not match or is different (such as our
Department column), then Power BI will create a new column for this row.

We need to be careful with columns that might appear to be the same, as a column
could have a blank space, which makes the name of the column different. For example,
SalesPerson is not the same as Sales Person. The other important thing to
remember is that the columns are also case sensitive.

Up to this point, we have used multiple files to get our data, but in the next section, we are
going to look at how we can append one file that has multiple tabs of data.

220 Advanced Power Queries and Functions

Appending multiple tabs
In this section, we are going to look at how we can append multiple tabs from the same
workbook. Although there are different ways in which we can do this, we are going to use
M code to append the tables together.

We are going to open a workbook with sample sales data (sample1.xlsx) for different
parts of South Africa. Each table is on a separate worksheet in the workbook and each
table is the name of the place (Cape Town, Durban, and so on):

1.	 To append the different sheets, we will create a new Blank Query by selecting this
from From Other Sources in the Data tab.

2.	 In the formula bar, I am going to use the =Excel.CurrentWorkbook()
formula, which will show me all of the tables in the Excel workbook. Please
remember that the formula is case sensitive:

Figure 6.40 – The show tables formula
Looking at the formula, it tells us to look at the current workbook and then it
finds the tables, name ranges, and connections, which are displayed. When this is
displayed, you will see that there is a table associated with each name.

3.	 To open the table, we can click on Table on the left-hand side of each of the different
places, which will then open it:

Appending multiple tabs 221

Figure 6.41 – The expanded table

4.	 For us to go back to our source table, we will have to delete the two APPLIED
STEPS we created in viewing the table.

Power Query is holding each of these tables in its data model:

Figure 6.42 – Append and merge the data

222 Advanced Power Queries and Functions

5.	 As seen in the preceding screenshot, we will need to click on the double-headed
arrow in the Content column, which will give us an option of which columns we
would like to combine:

Figure 6.43 – Select the columns we require

6.	 We are going to unselect Department, as only Cape Town used this feature, and we
are going to also unselect Use original column name as prefix.

The reason for this is that Power Query will add the column name content to all
of the columns. This means that the Region column name would become content.
Region. Once selected, click on OK.

7.	 Go through the sheet and make sure that all of the data types are correct and then
click Close and Load. This will create a new sheet in our existing workbook.

For the last part of this section, I am going to create another worksheet called Pretoria
and add this to the workbook. As I refresh the data in my query, everything automatically
refreshes and I have the most up-to-date data. In this section, we have appended and
merged the data from a data source and we have seen that, when we change or update the
data source, Power Query automatically creates new queries based on either new files in a
folder or new tabs in an Excel document.

I know that many people work with multiple workbooks, but most of the data I generally
work with is summarized into one workbook with multiple tabs. I find that this is the
easiest way of keeping my data up to date.

Summary 223

Summary
Throughout this chapter, we have concentrated on more advanced functions, using IF;
creating parameter tables and, my personal favorite, using Index and Modulo functions;
and lastly, appending files and tabs.

We have seen that when using the IF statement, it was relatively similar to Excel, but when
we used the nested IF statement when deciding on whether something was to be picked
up in the store or to be delivered the OR command became very important. The parameter
tables are great if you are using the same template every month and all you want to do is
change the data source from one file to another. Changing the table in Excel allows you to
update the data source without leaving Excel and going into Power Query Editor, which
saves you time. Next, we saw that the Index and Modulo functions are really useful when
you have an Excel document that does not have the correct formatting or perhaps has data
that is not even in columns. Using these functions allows you to take that data and create
custom indexing columns that allow you to re-order and manipulate the data so that it can
be more easily used to be analyzed. In the last part of this chapter, we looked at how it was
possible to append different files and tabs as well as different tables in the same sheet so that
it was easier every month to update our existing data sources.

Throughout this chapter, we have started looking at the M language and the difference
between Excel and M. Two of the main things is that M uses field names, which are in
square parentheses, [], while Excel uses formulae mostly with round parentheses, (). This
will be discussed in more detail in Chapter 9, Working with M.

There are still many more advanced formulae, tips, and tricks, which will be covered in the
remainder of this book. The next chapter deals with the automating reports, which will
become very useful when you need to make sure that everything is refreshing properly and
if there is a problem, we will be looking at the source code to find any underlying problems.

7
Automating Reports

in Power Query
Power Query provides options to streamline and automate reports from multiple sources.
In this chapter, we will look at the three types of storage modes and discover the pros
and cons of each mode. We will also create a report from multiple files that will update
every month.

In this chapter, we're going to cover the following main topics:

•	 Storage modes and dataset types

•	 Choosing the Import storage mode setting

•	 Power BI refresh types

By the end of this chapter, you will understand how to automate reports and how they
prove useful when using Excel and Power Query.

226 Automating Reports in Power Query

Technical requirements
It is assumed in this chapter that you are familiar with the Windows environment and can
view system processes by visiting Task Manager. You will also be proficient at importing
various data sources into Power BI and you should have prior knowledge of the interface
and be able to navigate it with ease. You need an internet connection to download the
relevant files from GitHub. Also, the code files for this chapter can be found at
https://github.com/PacktPublishing/Learn-Power-Query.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=KbDnA3WPjQ8&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=8&t=0s.

Understanding the storage modes and
dataset types
Different refresh requirements are available for the storage modes and dataset types within
Power BI. To view any sorts of changes that have occurred, you can reimport the data into
Power BI, or there is the option to query the data directly at the source.

When using the Power BI Desktop version, you may want to set the storage mode so
that you can manage how Power BI Desktop caches your table data in memory for any
reporting outputs you create. Let's investigate a few options that would make setting the
storage mode an advantage:

•	 Look at reducing the refresh times so that you only cache the data that is essential to
meet the requirements of your business.

•	 The report query performance in Power BI is definitely enhanced by ensuring that
data is cached into memory properly. This is especially crucial when users view and
access reports when DAX queries are submitted to datasets.

•	 When working with a large dataset, you can choose which tables you would like to
cache and which don't need to be cached. This will ensure that you do not use up
memory unnecessarily.

•	 User input editing can be altered with changes displaying directly within
uncached tables.

https://github.com/PacktPublishing/Learn-Power-Query
https://www.youtube.com/watch?v=KbDnA3WPjQ8&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=8&t=0s
https://www.youtube.com/watch?v=KbDnA3WPjQ8&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=8&t=0s
https://www.youtube.com/watch?v=KbDnA3WPjQ8&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=8&t=0s

Understanding the storage modes and dataset types 227

Now that you understand how setting the storage mode could benefit data refresh, in the
next topic, we will look at how to set the storage mode.

Viewing the Power BI Desktop Storage mode setting
Let's have a look at how we would view and set the Storage mode property in Power BI.
The storage mode is set on individual tables in the Power BI model. We use this setting to
control how Power BI caches data in tables within the model:

1.	 Click on the table for which you would like to set the storage mode in the Model
view. The Model view is the third icon on the left-hand side panel of your Power BI
Desktop instance, as in the following screenshot:

Figure 7.1 – A selected table in the Model view to make changes to the storage mode

2.	 The Properties pane to the right of the window will display the Advanced drop-
down list heading near the bottom of the pane.

228 Automating Reports in Power Query

3.	 Locate the Storage mode heading and then click on the arrow alongside the Import
option to view all the other options in the list:

Figure 7.2 – The storage modes at the bottom of the Properties pane

4.	 You will note that there are three options to choose from under Storage mode:

Figure 7.3 – Import, DirectQuery, and Dual Storage modes

Understanding the storage modes and dataset types 229

We can say the following about the three modes:
•	 Import: When this setting is active, any imported tables are cached and are loaded

into the data model. This ensures that data is returned through the imported tables
when queried through the Power BI dataset. Import is the only type of connection
mode that you can set regardless of the type of data source. Please note that when
using this option, you cannot revert the action once chosen. By this, we mean that
you will not be able to change to another type of Storage mode in the drop-down
list, such as DirectQuery, after setting the mode to Import. In the preceding
screenshot, you will notice that the DirectQuery and Dual options are grayed
out. This means that they are not available in this instance as the Import method
pertains to Excel files, and, therefore, will be the only option available in the Storage
mode drop-down list.

•	 DirectQuery: Tables are not cached in this instance, and any queries submitted to
a Power BI dataset will use the query language for that particular data source to
send data from the DirectQuery tables. This method can be slower as it sends
visuals. The plus side is that the single data source does not need to be refreshed.
DAX, modeling, and Power Query transformations are limited, however, with
this mode.

•	 Dual: This option is flexible and allows tables to be cached or not cached so
that they are able to fulfil requirements from either cached data or by actioning
an on-demand query using the query language for that particular data source.
An example of a query language is SQL. This mode can be used in Power BI for
Desktop and the Power BI service. We use this mode to improve performance and
limit the number of poor relationships caused by any of the DirectQuery tables
in a dataset. We refer to models that contain more than one type of connection as
composite models. A composite model has a mix of connections—for example, the
DirectQuery storage mode and the Import storage mode. With the DirectQuery
mode, data is not loaded into Power BI but is queried directly from the table in
the SQL server database, whereas the imported tables from Excel will need to be
refreshed each time.

I should just mention here that when we refer to the storage mode, we mean the
type of connection that we create to a data source. So, we can import many data
types into Power BI, and then we can create connections to the source data using
either the Import, DirectQuery, or Dual property. Some connections can be set
using more than one Storage mode option, while others cannot.

230 Automating Reports in Power Query

Note
Storage mode selection is a very important step, and deciding on which
connection type to use must be considered at the start. This will alleviate
complications and any hassle down the line of having to repeat the import or
connection steps, as well as repeating all the other elements that contribute to
the success of your data transformation. We cannot change the Storage mode
setting during the Power BI cycle process.

In this section, you have learned about the different types of storage modes and how to
set each connection type. In the next topic, we will see how to view the connection type
applied to each table in a dataset.

Viewing the storage mode at a glance
You can view the storage mode for each imported element using the Fields pane on the
right-hand side of the Power BI interface once you have imported data into Power BI.
Let's see how:

1.	 Navigate to the Fields pane.

2.	 Place the mouse pointer over any of the imported elements in the list.

3.	 You will notice a popup to the left of the element that you have hovered the mouse
pointer over, giving details about the import and the Storage mode type, as follows:

Figure 7.4 – Hovering over a table to view the Storage mode type

Choosing the Import storage mode setting 231

From the preceding screenshot, you can see that we went through the steps to visibly see
the type of storage mode applied to tables within a dataset. In the next section, we will
learn how to set the Import storage mode.

Choosing the Import storage mode setting
So far in this book, we have imported a number of datasets, but we have not really broken
down the steps to refine the process as we proceeded through the steps. Let's refresh our
memory by looking at the various steps again, but this time highlighting the Import
Data option:

1.	 Open Power BI Desktop, and then click on Get Data | Excel.

2.	 Select the SSGSchool.xlsx file to import.

3.	 Choose the tables you wish to import. In this case, we will select the tables we want
by clicking on the squares next to each one to select them individually:

Figure 7.5 – Selecting the tables to import using the checkboxes alongside each element

232 Automating Reports in Power Query

4.	 Click on Load to import the dataset.

5.	 You will see the Load screen, where the searched relationships are present,
before importing:

Figure 7.6 – The Load table screen will display once you have clicked on Load

6.	 If you were importing any SQL connections, the following screen would appear,
where the Import option for the Data Connectivity mode setting will be selected
as the default:

Figure 7.7 – The SQL Server database Import option

Choosing the Import storage mode setting 233

If you change this to the DirectQuery option, then the tables will not be imported
into Power BI. So, the process is the same, except that for the DirectQuery option,
after logging in to the database, you will see the tables you have access to, but will
only have a connection to the data, which is then updated by querying directly to
the data source. As we are importing Excel data for this example, the only option
here is to choose Import.

7.	 Click on OK to import the data.

8.	 After selecting the Data Connectivity mode setting, we normally see the Report,
Data, and Model tabs on the left-hand side of the Power BI window. If we create a
DirectQuery connection, the Data tab will not be shown as the data is not stored in
the model at all:

Figure 7.8 – The Data tab visibility in Power BI

Let's talk a little about how Power BI stores imported data and where we can view this in
the Windows environment in the next section.

234 Automating Reports in Power Query

Looking at where Power BI stores data
When a report is opened in Power BI Desktop, the dataset is stored in the memory of
the machine that is hosting that Power BI report. After publishing your Power BI
report to the Power BI website, it resides in the memory of the computer in the cloud.
I am sure you have seen the notifications that pop up when working in Power BI alerting
you that the data needs to be refreshed. This is why we also refer to Import Data as
a scheduled refresh:

Figure 7.9 – Representation showing how data is stored in Power BI

Let's use Task Manager in the next section to identify whether Microsoft SQL Server
Analysis Services is running as this is where data is stored in memory when using the
Import Data connection type.

Investigating whether Microsoft SQL Server Analysis
Services is running
To see where Power BI models are stored in memory when using the Import data
connection Storage mode, perform the following steps:

1.	 Right-click on the Windows taskbar.

2.	 Choose Task Manager from the shortcut menu provided.

Understanding the Power BI refresh types 235

3.	 In the Task Manager dialog box that populates, scroll down until you locate the
Power BI Desktop process. Click on the drop-down arrow to the left of the Power
BI Desktop heading to expand the options underneath it.

4.	 Locate the Microsoft SQL Server Analysis Services process.

5.	 Close the dialog box once you have viewed the process:

Figure 7.10 – The Power BI dropdown in Task Manager showing Microsoft SQL Server Analysis Services

In the next section, we will look at the various refresh types in Power BI.

Understanding the Power BI refresh types
It is extremely important to make sure that the data in Power BI is the most recent and
accurate dataset in your Power BI report visualizations. We want to present relevant and
engaging data to an audience through report dashboards. In this topic, we will discuss the
refresh types, which will help you understand where Power BI might spend its time during
a refresh operation.

236 Automating Reports in Power Query

Power BI online has a New look icon, which, when activated, will change the layout and
position of items on the Power BI interface. Depending on the view selected in your
online Power BI interface, you may find that the placement of the icons we referenced may
be in a slightly different location than explained here. The New look icon is located on the
Power BI online title bar toward the right-hand side:

Figure 7.11 – The New look icon in Power BI online

In a Power BI dataset, we have different flows of data from which reports and tiled
dashboards will query the dataset. These different modes of storage all have different
refresh requirements due to the fact that the data comes from different storage modes
and dataset types, as explained in the Investigating whether Microsoft SQL Server Analysis
Services is running section.

Datasets in the Import mode are cached (not imported) and so the size of the dataset is
enormous. Refresh issues will arise if the dataset reaches maximum dataset limits. When
using the LiveConnect/DirectQuery storage mode option, the data is not imported and
so is not refreshed, as mentioned before. It does refresh a tile, however, every hour or so
by default to allow the tiles to show the most recent results in the report visual.

The dataset settings can be edited to set dashboard tiles and reports to update using the
manual Refresh Now option. Let's investigate this setting in the next topic.

Learning how to refresh a OneDrive connection
Any Excel or comma-separated value (CSV) report or dataset that is compiled using
Power BI Desktop and shared online using OneDrive or Sharepoint is refreshed by Power
BI using the OneDrive refresh option. For this type of refresh, Power BI normally checks
whether a connection to a file in OneDrive needs to be synchronized approximately every
30 minutes.

Understanding the Power BI refresh types 237

Note
Power BI does not import data from OneDrive; it synchronizes datasets and
reports with source file refreshes.

For this example, we will use the report dashboard named WSDashboard.pbix, which
has been shared to a OneDrive location. We will take you through the steps to set this up
before we look at the refresh options:

1.	 Make sure you have Power BI online open by visiting https://app.powerbi.
com/home.

2.	 We will be using the report dashboard created in Chapter 6, Advanced Power
Queries and Functions, for this example. This report has been imported into Power
BI online using the Get Data option and linked via the OneDrive online service.
The report view looks as follows after it is connected through OneDrive to Power
BI online:

Figure 7.12 – The report dashboard is connected through OneDrive

https://app.powerbi.com/home
https://app.powerbi.com/home

238 Automating Reports in Power Query

Now, let's look at the steps to connect your report using OneDrive:

1.	 Click on the Get data item in the left-hand panel in Power BI online.

2.	 Click on the Get icon in the Files tile:

Figure 7.13 – Clicking on Get to create a connection to new content

3.	 Choose the OneDrive - Personal tile:

Understanding the Power BI refresh types 239

Figure 7.14 – The OneDrive - Personal connection tile

4.	 You will receive a notification asking for permission for Power BI to access the data
you are connecting to. Select Yes to continue:

Figure 7.15 – Notification popup asking for permission to access data

240 Automating Reports in Power Query

5.	 Select the Power BI dataset you wish to connect to, and then click on the Connect
icon in the top-right corner of the window:

Figure 7.16 – Selecting a dataset from a OneDrive location

The connection is made to the dataset in Power BI online and the report is shown in the
interface to the left under the Workspace heading.

In this section, we went through the steps to connect a report using OneDrive. In the next
section, we will view and perform the refresh.

Understanding the Power BI refresh types 241

Viewing and performing a OneDrive refresh
We can see when data was last refreshed by Power BI on the connected OneDrive dataset
using a number of methods, of which a few are shown in the following screenshots, along
with how to refresh the connection:

•	 The first is to view the details by visiting the title bar of the Power BI interface:

Figure 7.17 – Data last updated shown in the Power BI title bar

•	 Click on the three dots, located in the workspace menu, from which you can choose
to perform a refresh:

Figure 7.18 – The Refresh option in the workspace menu

242 Automating Reports in Power Query

Visit the Workspace view, where you can select the Datasets + dataflows heading to
display its contents. Hover the mouse pointer over the relevant dataset to see the Refresh
now and Schedule refresh icons, or click on the three dots to access the refresh settings:

Figure 7.19 – The Datasets + dataflows heading, where you can access the relevant refresh
and settings options

The Refresh now, Schedule refresh, and Settings options are also visible by clicking
on the three dots at the end of the dataset name in the left-hand side panel in the
Power BI interface:

Understanding the Power BI refresh types 243

Figure 7.20 – The Refresh now, Schedule refresh, and Settings options in the Power BI interface

Now that you know how to view and perform a OneDrive refresh, we will learn about the
Scheduled refresh option.

Setting a scheduled refresh
You can control when a refresh happens using the Scheduled refresh options in Power BI
online. In the following example, we have launched Settings for the SSGSchoolAdmin
dataset by clicking on the three dots to launch the menu from the navigation pane:

1.	 Locate the Scheduled refresh heading from the Settings pane.

2.	 Switch on the setting by clicking on the Keep your data up to date button.

244 Automating Reports in Power Query

3.	 Choose a Refresh frequency option—either Daily or Weekly—using the drop-
down list provided:

Figure 7.21 – Setting the Scheduled refresh frequency and email notifications of a failed refresh

4.	 Notice that you can set the option to Send refresh failure notifications to the
dataset owner by inputting the email address into the area provided so that these
individuals are notified if a refresh fails.

In this section, we learned how to set a scheduled refresh using the relevant options, and
investigated the various frequency options. In the next few sections, we will introduce
even more refresh options as a taster for you to explore further.

Incremental refresh
Incremental refresh is a fairly new feature that needs to be configured in Power BI. It is
used to increase the speed of refreshes when using large tables in Premium workspaces in
Power BI.

Understanding the Power BI refresh types 245

Its main advantage is that it only updates the data that needs to be refreshed. The user
will decide on the timeline in terms of the rows to store and refresh, as well as whether
to detect data changes within a certain period if the maximum value of the DateTime
column changes. The feature only works once the report is published to the Power BI
service. More information on this refresh type, along with how to set it up, can be found
at https://docs.microsoft.com/en-us/power-bi/admin/service-
premium-incremental-refresh.

Automatic page refresh
Automatic page refresh applies to DirectQuery data sources only. Once set up, Power BI
Desktop automatically sends queries to the data source (remember, only DirectQuery
sources), and then, after a short interval, it returns the data, thereby updating any visuals
you have in your report dashboard. Note that you can also set page refresh intervals for
any reports created in Power BI Desktop but published to the Power BI service. One thing
to note here is that the refresh rate of the interval cannot be less than the duration of time
it takes for any new data to arrive at the source. So, if data arrives every 5 seconds, then
the refresh interval needs to be 5 seconds.

You need to take into consideration the return times of queries to report visuals as
sometimes you might configure the setting to load way too much data, and the data source
will not be able to cope with this. Use an equation to calculate return times of queries to
report visuals according to how many visuals need to be refreshed and the number of
users viewing the reports at the same time. This will result in the number of queries you
need to support by setting the interval of the automatic page refresh to cope with the load.
More information on this is located at https://docs.microsoft.com/en-us/
power-bi/create-reports/desktop-automatic-page-refresh.

To set automatic page refresh in Power BI Desktop, do the following:

1.	 Select the report page you need to set a refresh for.

2.	 Click on the Formatting icon (the paint roller icon) in the Visualizations pane.

3.	 Locate Page refresh (at the bottom of the list).

4.	 Click the button at the top right to turn the setting to On.

5.	 Set the Duration and Unit values for the page refresh interval. The minimum value
here is 1 second and the default is 30 minutes.

6.	 Your report will now refresh at the interval set.

https://docs.microsoft.com/en-us/power-bi/admin/service-premium-incremental-refresh
https://docs.microsoft.com/en-us/power-bi/admin/service-premium-incremental-refresh
https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-automatic-page-refresh
https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-automatic-page-refresh

246 Automating Reports in Power Query

This section introduced the automatic page refresh option, and you have learned how
to set this option in Power BI Desktop using the steps provided. We will now look at the
dataflow refresh option.

Dataflow refresh
Often, you will see from your Start and End refresh history report in Power BI that
the process of refreshing data is taking a while. You will also notice the Apply query
changes notification window, which highlights refresh details and chugs along while
the refreshing is happening. Dataflow refresh speeds up the refresh step by running
a Power Query process separately from any other Power BI reports. So, what we mean
is that there is no report or dataset to bind the process and so it is more quickly stored in
a Microsoft cloud storage facility named Azure Data Lake Storage. Find out more about
this refresh option at https://azure.microsoft.com/en-gb/services/data-
lake-analytics/.

Summary
In this chapter, we went through the theory relating to the different storage modes and
dataset types available in Power BI. Overall, we saw how to automate reports using the
modes in Power Query and why it is done.

We also learned how to view the storage mode and choose various settings to manage
how Power BI caches table data. We investigated the three types under the Storage mode
setting—namely, Import, DirectQuery, and Dual. We also looked at how Power BI stores
its data and where to locate Microsoft SQL Server Analysis Services to understand how
Power BI keeps its models in memory. In the last section, we learned about the various
Power BI refresh types, including the Import, LiveConnect/DirectQuery, and OneDrive
refresh modes. We also learned how to use the Scheduled refresh option to have control
over when data is refreshed. Finally, we learned how to connect a report to OneDrive and
refresh the connection by synchronizing the dataset, and then we introduced some new
features, including dataflow, incremental, and automatic refresh.

In the next chapter, we will concentrate on the creation of a dashboard from connected
data, selecting a visualization type, and publishing and customizing the dashboard. We
will also cover multi-dimensional reporting.

https://azure.microsoft.com/en-gb/services/data-lake-analytics/
https://azure.microsoft.com/en-gb/services/data-lake-analytics/

8
Creating Dashboards

with Power Query
Dashboards are business-intelligent, single-canvas pages that allow the user to tell a story
through various visualizations created from table data to highlight important data points
for an organization.

The great thing about dashboards is that once they are created, they are completely
interactive. They can be viewed from anywhere in the world and, depending on the user's
access level, it is possible to edit the data as well. Of course, all the data is live, which
means that the millions of rows of data on a dashboard are always up to date and current.

You will find this a very practical and hands-on chapter as if you follow along with the
steps, you will create your own interactive dashboard, which you will be able to upload
onto the web. In this chapter, some of the skills that you will learn include the following:

•	 Uploading files that have a specific file format, even if there are many different
file formats in the folder

•	 Learning how to transform data to make sure that the files you are trying to
upload work correctly

•	 Creating one-to-many relationships in order to use other tables

248 Creating Dashboards with Power Query

•	 Creating various measures in order to use our calculated figures in the dashboard
•	 Creating a dashboard from connected data, selecting a visualization type,

and publishing and customizing the dashboard

In this chapter, we're going to cover the following main topics:

•	 Creating a basic power pivot and PivotChart
•	 Using Power BI to collect and connect data
•	 Using Power BI to add to a data model
•	 Selecting data visualization, a dataset, and an appropriate chart
•	 Publishing a dashboard
•	 Sharing a dashboard

Technical requirements
You need an internet connection to download the relevant files from GitHub.
Also, the code files for this chapter can be found at https://github.com/
PacktPublishing/Learn-Power-Query/.

There is an additional folder called folder that has the files necessary for the
import process.

This chapter assumes that you already know how to load different data sources into
Power BI and Power Query.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=MJ04RbLXxXk&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=9&t=0s.

Creating a basic power pivot and PivotChart
Using dashboards, we can see the data in a visual representation instead of just the figures.
This sometimes makes it easier to spot trends and analyze data.

Many times, you will be given data from another person or you will have something that
came from an exported CSV file that you need to create reports on. In this first section,
we are going to look at pivot tables and PivotCharts and how we can create them.

To start, we are going to create a basic pivot table and a PivotChart to see how this is done.
We are going to use our sales data, which shows what has been sold, to whom, and the
sales representative who sold it. Refer to the following screenshot:

https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://www.youtube.com/watch?v=MJ04RbLXxXk&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=9&t=0s
https://www.youtube.com/watch?v=MJ04RbLXxXk&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=9&t=0s
https://www.youtube.com/watch?v=MJ04RbLXxXk&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=9&t=0s

Creating a basic power pivot and PivotChart 249

Figure 8.1 – A basic table

We are going to create a pivot table and chart of the salespeople and how much they
have sold.

Note
If you are already familiar with how to create these items, then skip to the
next section.

Let's see how this is done:

1.	 Convert the range to a table (Ctrl + T) and make sure that the entire table has
been selected.

2.	 Create a pivot table by selecting the PivotTable option from the Insert menu, which
will bring up the Create PivotTable window.

3.	 Select New Worksheet and then click OK.

Important note
Before creating the pivot tables, make sure that there are no blank columns,
blank rows, or merged cells, as this will affect your end product.

250 Creating Dashboards with Power Query

After performing the preceding steps, refer to the following screenshot:

Figure 8.2 – The Value Field Settings dialog box

There are a few things missing that need to be added:

1.	 Move Salesperson to ROWS and Sum of Net Sales to VALUES.

2.	 The currency numbers are not formatted correctly in the pivot table. Right-click
anywhere on one of the numbers and select Value Field Settings.

3.	 Click on the Number Format button and change the format to Currency before
clicking OK.

4.	 Rank Salesperson from highest to lowest by right-clicking on any of the currency
figures and then selecting Sort Largest to Smallest from the Sort menu.

Creating a basic power pivot and PivotChart 251

Now that we have our data in the correct format, we can create a PivotChart that will
depict the sales representatives and their sales in descending order.

Perform the following steps:

1.	 Select PivotChart from the Analyze menu and select the bar graph:

Figure 8.3 – Adding a PivotChart

2.	 To neaten the chart, right-click on the Salesperson button and select Hide All Field
Buttons on Chart.

3.	 The name order is not the same as in our PivotChart, and we want this to match.
Right-click on any salesperson's name on the PivotChart and then select Categories
in reverse order from Format Axis.

4.	 Delete the labels, the legend, and the vertical lines. Rename the title by right-clicking
on Total and selecting Edit Text.

5.	 We want to make the bars in the bar chart a little bit thicker so that they stand out
more. Right-click on one of the bars and then select Format Data Series. Change
the gap width to a smaller number, which will make the bars wider. Depending on
the number of salespeople, the bar's thickness needs to be adjusted.

252 Creating Dashboards with Power Query

This is what the final outcome will be:

Figure 8.4 – Value Field Settings with a chart

Although this is a basic pivot table and PivotChart, it can be done very quickly and the
overall result is brilliant.

In the next section, we will look at how we can use Power BI Desktop to create an
interactive dashboard.

Using Power BI to collect and connect data
There are a number of steps that we need to follow to create a dashboard. The first step is
to collect and connect the data we have to the data model so that we can then move on to
the next step.

We will use our sales data from different stores based in the UK. The reality is that
these files could be online, on a SQL server, or on a website, but you could also have
downloaded the files locally, as with this example. The only difference in the steps would
be when you get the data. This example shows connecting to a folder, but if your data is
somewhere else, you can refer to Chapter 4, Connecting to Various Data Sources Using Get
& Transform, to see how to get data from various sources into Power BI Desktop. The files
for this example can be found in the GitHub repository.

Using Power BI to collect and connect data 253

In the following screenshot, we have the ZIP code of the store, the product that was sold,
and how the person paid for the goods, and the last column (column H) is the cost of the
goods that were sold:

Figure 8.5 – Sales data

To get the data from the Power BI, perform the following steps:

1.	 To get the data into Power BI, open Power BI Desktop and go to Data | Get Data
| More…. As mentioned earlier, if you have copied the data to a different location,
please use the steps found in Chapter 4, Connecting to Various Data Sources Using
Get & Transform, to see how to load the data.

2.	 Then, go to Get Data | Folder | Connect.

254 Creating Dashboards with Power Query

3.	 From the Folder window, click on Browse and locate the folder with the relevant
data files.

4.	 Once the folder has been selected, click on OK.

Once done, this is how the files will be displayed:

Figure 8.6 – The files are displayed

At this point, I would like to point out that if your data is on a SQL server or in another
location, please link it to your data. If you are unsure of how to do this, please refer to
Chapter 4, Connecting to Various Data Sources Using Get & Transform.

Now, select Transform Data, as shown in the preceding screenshot, as we will need to
make sure that all the data is formatted correctly before we can use it.

This is how it appears:

Figure 8.7 – The query editor

This looks and feels very similar to Power Query in Excel.

Using Power BI to collect and connect data 255

We will change the name of the dataset so that it is easier for us to identify it later. Change
the Name field in the PROPERTIES field to SalesData. This will now become the
name of the query, and it will also become the name of the dataset that we will need to
import later.

If we look at the files that we have imported, they are all currently Excel workbook files, but
there could potentially be a problem with this later when we are trying to add additional
files. It is best practice for us to try to pre-empt any future problems by changing this to
make sure that all the extensions are in lowercase. The reason for this is that the formula
is case sensitive, as is the case in Excel Power Query. We can sort this out by right-clicking
on the Extension column and selecting lowercase from Transform to make sure that the
extensions are always lowercase, even if the user manually types it in uppercase.

Refer to the following screenshot:

Figure 8.8 – Transforming to lowercase

256 Creating Dashboards with Power Query

The second thing we can do is to make sure that only Excel files are imported. Click on the
Extension column filter and then select Equals … for Text Filters, as follows:

Figure 8.9 – The Equals text filter

We do not want other files to be imported, so we can make a rule to only import Excel
workbooks. Refer to the following screenshot:

Figure 8.10 – The Filter Rows window

We need to type .xlsx into the textbox. This also means that previous versions of Excel
will not be imported.

Using Power BI to collect and connect data 257

At this point, we do not need any of the other columns except for the Content column.
So, we will remove the rest by right-clicking on the Content column and then clicking
Remove Other Columns. This is done as follows:

Figure 8.11 – Removing other columns

If we click on the right-hand side of each of the cells where it says Binary, next to each
number is the Excel file that is associated with this content, as follows:

Figure 8.12 – The binary Excel files

258 Creating Dashboards with Power Query

After this, we will see how to combine files.

Combining files
Normally, for us to combine numerous Excel files, we can select the Combine Files icon,
which will extract all the data and combine the files (this is the two down arrows icon on
the right-hand side of the Content column). This, unfortunately, will not work for us for
this specific example as it does not promote headers as its default behavior.

We will need to create an extra column and use the Excel workbook function to extract
the data we need from each of the different Excel files. Refer to the following screenshot:

Figure 8.13 – Adding the custom column

Let's see how to do that:

1.	 From the Add Column menu, click on Custom Column, which will bring up the
Custom Column window.

2.	 Create a new column name, GetExcelData, and for Custom column formula,
type in Excel.Workbook([Content], true), and then click OK.

Using Power BI to collect and connect data 259

Note
For the [Content] part of the preceding option, you will need to
double-click on the Content column in the Available columns window
on the right.

This is depicted in the following screenshot:

Figure 8.14 – New column formula

This first part of the formula before the comma tells Power BI to open the contents of each
of the Excel files. The second part of the formula after the comma (true) tells Power BI to
promote headers.

The next step will be to keep all the objects that we need and delete the unnecessary
content we will no longer need.

260 Creating Dashboards with Power Query

When you click on the newly created GetExcelData column, you will notice that it has
extracted all of the different objects within that file:

Figure 8.15 – The GetExcelData column

We no longer need the Content column as everything is now in the GetExcelData
column, so we can remove the Content column. Now, we have all the Excel documents
with promoted headers, so we can click on the Combine Files icon on the right-hand side
of GetExcelData.

Using Power BI to collect and connect data 261

The only thing we need to do is untick Use original column name as prefix and then
click OK.

When we look at the window now, there are a number of different objects that have been
imported into this query. Some of these objects are not necessary for us to use:

Figure 8.16 – Different kinds of objects

262 Creating Dashboards with Power Query

From the preceding screenshot, we can see several different columns. Here's what each of
them indicates:

•	 The Name column tells us the name of the object.

•	 The Data column has our Excel data, and if you click on it, it will display a preview
of the file at the bottom.

•	 The Kind column is the one that we need to concentrate on, as the only type that
we need to be displayed is the Sheet type.

•	 Click on the drop-down list on the right-hand side of the Kind column and select
Equals… from the Text Filters menu. Type Sheet in title case, as this is the same
as what it says in the Kind column, then click on OK.

When we look at the Name column, we can see that there are Excel worksheets that have
the default names, such as Sheet1, which does not have any relevant information:

Figure 8.17 – The default name sheets

Click on the filter icon on the right-hand side of the Name column and this time we are
going to select Does Not Contain... from the Text Filters menu. Type in Sheet, and then
click OK.

We now only have the tables that we need to be imported, except for ManagerTable,
but we can get rid of that in three steps:

Using Power BI to collect and connect data 263

Figure 8.18 – The Expand button

We only need the Name and Data columns, so we can remove the other columns.

Click on the expand icon on the right-hand side of the Data column, as shown in the
previous screenshot. We can now select the columns that we would like. We can select
them all except the Manager of Store column, and then click OK:

Figure 8.19 – The completed import

264 Creating Dashboards with Power Query

When looking at the completed import, there are a few minor things that we can do to
improve it.

The first column is called Name, and we can double-click on the title to rename this
column City. We can now go through and make sure that each of the different columns
has the correct data type. City, Store Zip Code, Product, and Payment Type
are all text data types. The quickest way to change all of these columns in one go is to
select all of the appropriate columns by holding down Ctrl while selecting the columns.
Right-click on any of the columns and then select Text from the Change Type menu,
which will change all the selected columns at the same time, as follows:

Figure 8.20 – Changing to the Text data type

The second column needs to change to the Date data type and the Units column needs
to change to the Whole Number data type:

Using Power BI to collect and connect data 265

Figure 8.21 – Fixed decimal number

The last three columns need to be currencies, but in Power BI, we need to change the data
type to Fixed decimal number, which is Excel's version of currency. One of the major
differences between Decimal Number and Fixed decimal number is that the latter option
will only allow 4 decimal places, while Decimal Number can have up to 15 decimal
places. A quick way to select the last three columns is to select the first column, press and
hold Shift, and then select the last column.

We have now appended all the different tables, but we might need an additional column to
work out the actual cost per item, which would include the discount.

266 Creating Dashboards with Power Query

We will insert a custom column by selecting Custom Column from the Add Column
menu. Call the new column name NetSales and type the Number.Round([Amount
of Sale]*(1-[Revenue Discount]), 2) formula, as follows:

Figure 8.22 – Adding the NetSales custom column

The formula is Amount of Sale multiplied by the discount. Number.Round rounds
the answer, and 2 at the end of the argument tells Power BI to round the number to 2
decimal places.

Once completed, click on OK and we can change the data type to Fixed Decimal Number.

As we now have this new column, we don't need the Amount of Sale or Revenue
Discount columns, so we can delete them. The table is now complete, and we can load it
to the data model by selecting Close and Apply from the Home menu.

At this point, we have transformed our table, deleted the information we no longer need,
and added columns with additional information. As mentioned previously, although we
have used a folder for this example, the files could be online, on a website, or in a SQL
server. We can now use this query in our data model, which completes the first step of the
process. The next section deals with the second step of the process.

Using Power BI to add data to a data model 267

Using Power BI to add data to a data model
This section deals with creating relationships and adding more data, specifically measures
and calculated columns, using DAX, which allows us to modify and create additional
columns that we will need in the dashboard.

When we look at Power BI with the query that we created from the previous section, we
can see the name of our table, SalesData, on the right with all of the different fields:

Figure 8.23 – The NetSales table

On closer inspection of SalesData, the ∑ symbol on the left-hand side of some of the
fields means that these are numbers. On the left-hand side of the window, we have the
Report, Data, and Model views:

Figure 8.24 – The different views

When we first opened Power BI, we were in the Report view by default.

268 Creating Dashboards with Power Query

If we click on the Model view, we can see the different relationships that we currently have
between our tables. At the moment, we currently do not have any relationships, but here,
we are going to add another table and build a relationship with a file from a SharePoint
server, although you can follow the same steps if you were using a SQL or Azure server as
well. From the Home tab, select Get Data and click More… | SharePoint folder | Connect.

You will need to enter your authentication details and then click Connect. (Please refer to
Chapter 2, Power Pivot Basics, Inadequacies, and Data Management, to see how to connect
to various sources.) Once you click on the relevant file, click on the table that you need
and then select Transform Data. It might be necessary to neaten the file up by removing
unwanted columns and so on before selecting Close and Apply.

When we click on the Model view, we can see two different tables—one is the fact table
with all the sales transactions and the other is our dimension table with the manager of
the store.

We will create a relationship between Store Zip Code and Zip Codes. Click
and hold on Store Zip Code, and then release the mouse on Zip Codes in the
ManagersTable window.

This will create a one-to-many relationship between these two tables, which is depicted in
the following screenshot by the 1 symbol on the left and the * symbol on the right, which
indicates many, thus a one-to-many relationship. This means that one row, which is Zip
Codes, could be linked to many rows, Store Zip Code:

Figure 8.25 – The one-to-many relationship

Using Power BI to add data to a data model 269

If we click on the Data view, we can see the tables and fields in this data model.
Now, when we look at preceding screenshot, we want to add another column to our
SalesData table. The number of units sold will depend on whether this column will
be retail or wholesale.

There are two different ways in which you can create the column. The first is by
right-clicking on SalesData on the right and then selecting New column; otherwise,
you can select New column in the Table tools menu, as follows:

Figure 8.26 – The table tools menu

Note
This is the latest version of Power BI Desktop at the time of writing, April 2020.
If you have a previous version, then there might be a Modeling menu instead
of Table Tools.

After selecting New column, Column = will automatically appear in the formula bar. We
are going to type in an IF formula that will look at the number of units that were sold and
if it is less than 5, the column will say Retail; otherwise, it will say Wholesale.

Delete Column = and type in the following:

RetailWholesale = IF(SalesData[Units]<5, "Retail", "Wholesale")

270 Creating Dashboards with Power Query

When typing the formula, after typing in =If(, press the S key on your keyboard and
the different fields will come up with the SalesData table name. You can then click on
Units, which is the field that we would like.

From the condition we stated earlier, it is evident that anything less than 5 will say Retail
and anything above 5 will say Wholesale. This formula is based on the row context, as it
will look at each unit in each specific row and then apply the IF formula to that row.

If you take a look at the following screenshot, you will notice that there is a calculated
column symbol (fx) in the formula bar to the left-hand side of the RetailWholesale
field. This is due to the IF condition that we created when adding the column:

Figure 8.27 – The calculated column

We now have the standard columns that we require. In the next section, we will add
measures, which are columns that can carry out more specific mathematical equations.

We are now going to create a few measures in the SalesData table. If you have not used
measures before, they are used to calculate aggregates—for example, the net revenue,
gross profit, sum, the average of a column, and so on. Measures are only calculated at the
time of the query, so they are not part of the stored database. Measures are also available
to all calculations and visualizations in the model. As they are not stored in memory, they
are slightly faster to execute.

The measures that we are going to create for this table are GrossProfit,
GrossProfit%, TotalCODSold, and TotalRevenue.

Using Power BI to add data to a data model 271

From Table Tools, select New Measure and type = SUM(SalesData[NetSales])
into the formula bar. Before pressing Enter, change this to a currency type and set the
decimal places to 0. We are going to do exactly the same and create another measure
called TotalCOGSold with the TotalCOGSold = sum(SalesData[COGS])
formula, and we will also change this to a currency type with no decimal places:

Figure 8.28 – The new TotalRevenue measure

Create another measure called GrossProfit and type GrossProfit =
[TotalRevenue]-[TotalCOGSold] into the formula bar. Then, add another
measure called GrossProfit% and type GrossProfit% = [GrossProfit]/
[TotalRevenue] into the formula bar. This time, we need to set this to a percentage
and keep it within 2 decimal places.

At this point, we have two tables (ManagerTable and SalesData), we have a
calculated column (RetailWholeSale), and we have four measures (GrossProfit,
GrossProfit%, TotalCODSold, and TotalRevenue).

We now have everything that we need for our visualization dashboard. The next section
goes through the process of creating a visualization dashboard with the different options
we have.

272 Creating Dashboards with Power Query

Selecting data visualization, a dataset, and an
appropriate chart
In the previous section, we have imported all of our data into a Power BI data model. This
section deals with how to create an interactive dashboard that will visually show us the
data that we can use to analyze the trends.

In Power BI, click on the Report view on the left-hand side, which will bring up a blank
working space, which is where we can create our visualizations. On the right-hand side are
all the different visualizations that we can use, as in the following screenshot:

Figure 8.29 – The visualizations menu

Most of these are self-explanatory, but we will be using a few different ones so that we can
learn how they work.

Note
The version of Power BI for Desktop that you're running will determine which
of these visualizations you have, and some of the icons might look slightly
different from the figures that are displayed here. This is the latest version at the
time of writing, April 2020.

Selecting data visualization, a dataset, and an appropriate chart 273

We are going to start with one of the great features that has been introduced that shows
you geographically where in the world your data comes from—the map visualization:

1.	 Click once on the Map visualization icon and it will appear in the top-left corner
of the screen.

2.	 To associate data with it, select Zip Codes in the ManagerTable table and
GrossProfit in the SalesData table, as follows:

Figure 8.30 – Map visualizations

We can now see the gross profit for each of the different places based on their postal
or ZIP codes. The larger the size of the circle, the larger the gross profit is. Quickly,
by looking at this, you can see that there are three areas that are doing well—namely,
Southampton, Manchester, and Glasgow—while London seems to be doing less well.

There are several different options that we have with regards to what our visualization
looks like:

•	 If you click on the paint bucket, which is the Format tool, in the Visualizations
menu, you can change the size of the bubbles and you can create a border around
the visualization.

274 Creating Dashboards with Power Query

•	 Click on the Clustered bar chart option in the Visualizations menu and
select Manager of Store in the ManagerTable table and GrossProfit in the
SalesData table. This is how the chart appears:

Figure 8.31 – Clustered bar chart visualization

•	 In the Format section, you can change the color of the chart. This can help you
distinguish between different sales departments or perhaps different commission
rates. As part of the interactive visualizations, if I click on a specific salesperson, it
will automatically adjust the map to show me where that salesperson is based.

•	 When we click on Sallim Simmonds, the map changes to London, and you can
then see that specific salesperson's location:

Figure 8.32 – Sallim Simmonds' postcode

Selecting data visualization, a dataset, and an appropriate chart 275

Click on Line and clustered column chart and select Product, GrossProfit and
GrossProfit% from the SalesData table:

Figure 8.33 – A line and clustered column chart

You will notice that this is not displayed the same as the preceding chart as at the moment,
both of these values are sitting in Column values. Click and drag GrossProfit% to the
Line values and this will then display the two different charts.

Create an identical line and clustered column chart and select Payment Type,
GrossProfit, and GrossProfit% from the SalesData table.

276 Creating Dashboards with Power Query

Do the same thing as before and move GrossProfit% to Line values. It is possible to
move it directly from its field in the table to this position as well. Resize and rearrange the
different windows to the position of your choice:

Figure 8.34 – The second line and clustered column chart

We are going to create a few slicers that work in the same way as they do in Excel
PivotTables. The first one is a slicer for the different cities.

Click on Slicer in the Visualizations menu and select City from the SalesData table.
Move and resize the window to a place on the dashboard. Create a second slicer for
Payment Types by selecting Payment Types from the SalesData table:

Selecting data visualization, a dataset, and an appropriate chart 277

Figure 8.35 – Adding different slicers

There are more things we are going to do to complete our visualization dashboard,
namely, create a multi-row card and a Q&A object:

•	 Click on the Card icon and select TotalRevenue. Change the font, color, and size to
make it stand out from the other information.

•	 A multi-row card is the same as a card except it allows you to display more than one
item at the same time.

•	 Select Multi-row card and click on the other three measures that we created earlier.
Using Format, it is possible to change the color of the background and the Data
labels, as well as the category color, size, and font.

The last visualization we will be adding is Q%A. I find this useful as it allows you to ask a
question about any of your tables and fields and the value will be displayed. I want to point
out that, by default, it rounds numbers up or down so that they look better. For example, if
you asked "What is the total revenue?," it would come up with a figure of 24 million, while
the revenue is actually 24.489472 million.

278 Creating Dashboards with Power Query

Select the Q&A icon from the Visualization menu and then type in the What is
Netsales by city? question, as follows:

Figure 8.36 – The Q&A visualization with the What is the Netsales by city? question

It is now possible to select the two windows with the arrow, and this will then turn this
Q&A visualization into a standard visual, which we will select. We have now looked at all
the possible types of visualization. Refer to the following screenshot:

Figure 8.37 – The completed dashboard

Saving, publishing, and sharing a dashboard 279

We now have a completed dashboard. When you are clicking around, you will realize
how powerful it really is. Every time you click on an element, it will create a filter for that
element. You can even click on a product and it will show you the total revenue, the net
sales by city, and your percentage gross profit, all live.

The next section deals with the different options for where and how we can save dashboards.

Saving, publishing, and sharing a dashboard
This section deals with how to save and publish your interactive dashboard. Before
beginning, you need to know that once you publish your dashboard on the web, other
people can see the data and run the reports without any authentication, so make sure that
this complies with your organization's policy.

To publish a dashboard, do the following:

1.	 Go to File | Publish | Publish to Power BI.

2.	 Select a location.

There is also a Publish button on the Home tab, which is a bit easier to access.
The following screenshot shows this option:

Figure 8.38 – The Publish to Power BI window

280 Creating Dashboards with Power Query

3.	 By default, it will show My workspace:

Figure 8.39 – The online Power BI portal

4.	 Click on Select and after a few seconds, you will get a message to say that this has
been successful.

5.	 Click on Got it to get rid of the window.

You have now published the work, but it is not obvious where you have published it to.

There are two different options that you have, depending on your subscription. Go
to office.com or https://powerbi.microsoft.com/en-us/landing/
signin/ and sign in with your Microsoft account. This needs to be the same account
that you used to log in to Power Query.

Once you are signed in, you will see My workspace, which is where your data and reports
are. When you look around, you will notice that your uploaded file can be found in two
places, as shown:

http://office.com
https://powerbi.microsoft.com/en-us/landing/signin/
https://powerbi.microsoft.com/en-us/landing/signin/

Saving, publishing, and sharing a dashboard 281

Figure 8.40 – The Power BI files

If you click on the Datasets menu, this is where the actual datasets with all the data sits.
You have a few options regarding security, permissions, and downloading the .pbix
Power BI file:

Figure 8.41 – The Datasets options

282 Creating Dashboards with Power Query

Although you could then send or share this file with another person, this is not the ideal
way of sharing it. One of the reasons for this is that each time there is an update, you
would then have to resend or share the file again.

Depending on your license, you may be able to share your datasets with anyone. You can
only do this if you have the Pro version, however.

If you click on the Reports tab, there are more things that you can do concerning the
report that you created, as shown:

Figure 8.42 – The Reports options

In the ACTIONS section, we can share, analyze, view related versions, change settings,
delete, and save a copy of the report. Once again, your license type limits what you are
able to do.

In the next section, we will look at sharing all of this content with other people both inside
and outside of your organization.

Sharing a dashboard
There are several different things that we can share. We can share reports, dashboards, and
some data, and we can also decide on various levels of sharing. The basic version allows
you to share basic information, but the professional version allows more functionality.

Sharing a dashboard 283

If you click on Pro trial, you will get 60 days free and you do not have to give your credit
card number and other details. With an upgrade to Pro, there are many more options that
you can do. One of the best options in the Pro version is the following option to share
your report with multiple people:

Figure 8.43 – The sharing options

If you select the Share button in the top-right corner of the screen, you can share your
report with specific people and depending on the options that are selected, they can share
your report and allow other people to use your datasets to build additional reports, and
you can send an email notification to the people that you are sharing with.

Note
Be aware that people can use your data in their own sets, so make sure that this
is allowed.

284 Creating Dashboards with Power Query

Once a person has access, it is possible to change their level of access by selecting Access
and then clicking on the three dots to the right-hand side of their name. This allows you to
remove access or change their access to Read or Read and reshare:

Figure 8.44 – The ACCESS sharing options

There is also a very quick way to share and that is with a QR code. If you click on the three
dots to the right of Share in the top-right corner, you can select Generate QR Code:

Figure 8.45 – Generate QR Code

Sharing a dashboard 285

Once the code is generated, you can send it to another person or upload it to a
social media platform to send it to multiple people if you would like them to view
the dashboard.

Both of the preceding methods are the basic sharing options for dashboards and reports.
The great thing with these sharing options is that they are very quick to do and easy to
set up.

There is, however, a big disadvantage with this basic sharing options in that the
people you share with cannot edit the information. The other disadvantage is that
you can only share one dashboard at a time, which could be a problem if you have
multiple dashboards.

If you click on the File menu, this gives you many additional options for sharing and
embedding your dashboard:

Figure 8.46 – The File menu with sharing options

286 Creating Dashboards with Power Query

From the File menu, we can share both the dashboards and the reports. There are a
few options that are very self-explanatory, such as Save As, Print, Export to PDF, and
Download report, which are all non-interactive and basically give you the equivalent of
a hard copy of the reports or dashboards. Even Export to PowerPoint just provides an
image of the dashboard and is not interactive:

Figure 8.47 – A PowerPoint export

The other options in the File menu offer more interactivity. Embed, Embed in
SharePoint Online, and Publish to web are all options that allow full interactivity
with the dashboard.

Sharing a dashboard 287

These options are all slightly different but do the same thing, which is either giving you
code to embed into a website or a web address:

•	 When you click Publish to web, you are given a link that you can
send to other people in an e-mail (https://app.powerbi.com/
reportEmbed?reportId=fbf63569-146d-446a-9ad8-8f94587d8824&
autoAuth=true&ctid=85931486-6860-4c35-8c73-06af6716f695
&config=eyJjbHVzdGVyVXJsIjoiaHR0cHM6Ly93YWJpLXVrLXNvdXRo
LWItcHJpbWFyeS1yZWRpcmVjdC5hbmFseXNpcy53aW5kb3dzLm5ldC8
ifQ%3D%3D) and you are given code to embed into a blog or website (<iframe
width="1140" height="541.25" src="https://app.powerbi.com/
reportEmbed?reportId=fbf63569-146d-446a-9ad8-8f94587d8824&
autoAuth=true&ctid=85931486-6860-4c35-8c73-06af6716f695
&config=eyJjbHVzdGVyVXJsIjoiaHR0cHM6Ly93YWJpLXVrLXNvdXRo
LWItcHJpbWFyeS1yZWRpcmVjdC5hbmFseXNpcy53aW5kb3dzLm5ldC8ifQ
%3D%3D" frameborder="0" allowFullScreen="true"></iframe>).

•	 When looking at the embedded code, it is important to see that the width is 1140,
so when you upload it to a blog, it might be necessary to change this to something
a bit smaller. If this is done, the dashboard becomes smaller and can pose some
legibility problems. So, ensure that you use a proper scale.

•	 Publish to web is a free way of sharing, but remember that any person with the link
can view it as there is no security or authentication.

288 Creating Dashboards with Power Query

•	 Embed in SharePoint Online works in a similar way to Publish to Web—you are
given a URL—but the one difference is that you can then give specific people access
to the file through SharePoint:

Figure 8.48 – Using SharePoint Online to embed Power BI
From SharePoint Online, create a page and then select Add a new web part in
column 1 and choose the Power BI option. Click on the Add report button and
insert the link that was provided earlier:

Sharing a dashboard 289

Figure 8.49 – The linked report

Once the link is inserted, it will automatically come up with the page name and you can
then choose whether you want a 16:9 or 4:3 aspect ratio.

Once completed, it will automatically appear and then you can publish it. Refer to the
following screenshot:

Figure 8.50 – The sharing options in SharePoint Online

290 Creating Dashboards with Power Query

From the preceding screenshot, we see that within SharePoint Online, you can change
the permissions to certain people or your entire organization as with any other file. Using
this option is fairly easy as you do not need to write any code; the only thing you need is
the URL.

Embed allows you to share your reports through a web portal, but only authorized users
have access to the data:

Figure 8.51 – Embedding a report

To sum up, the different ways that you can share are as follows:

•	 The basic sharing options make it quick and easy to share with other people. They
are also great for testing reports and dashboards.

•	 Publish to web is a free service of sharing dashboards and datasets and is useful
when sharing non-confidential information.

•	 Using SharePoint Online is an easy way to share your information with additional
security and authorization. This is an excellent option to use when sharing within
an organization.

•	 Embed allows you to use your on-premises SharePoint environment or a web
application with security, but without needing a web developer to write the
necessary code for it.

Sharing a dashboard 291

We have now created a dashboard and shared it with the relevant people or departments.
These people can all access your live datasets and use the full interactivity functionality.
Any time you add or edit any of your data and publish it, this will automatically be
updated for everyone.

The next step once this is shared is to view a report on the usage of our data
and dashboard:

Figure 8.52 – Report usage metrics

When you click on the Usage metrics button, Power BI helps you understand who is
using the dashboards and for what purpose in your organization. The Usage metrics
reports are read-only, but it is possible for you to copy the report, which then enables you
to edit the report. When looking at the usage metrics, it is possible to see whether one of
the dashboards that you have created is not being used or you can see whether a specific
department is using a dashboard all the time.

Most people can make a dashboard, but few people can make awesome dashboards
that stand out. The next section will give you a few hints and tips on what to do and
what to avoid.

292 Creating Dashboards with Power Query

Best practices
There is no concrete answer to what the best dashboard to have is. It depends on a number
of different factors that will influence the type of dashboard that you create.

Audience
Who will be looking at the dashboard? Is it a member of the public who is looking at
government statistics from a particular county or will it be used by a business data analyst
who is looking for financial trends? This will establish how much information and detail
you need to have on your dashboard. Another thing to consider is where the dashboard
is going to be viewed. Will it be on a user's laptop or tablet or will it be on a large screen?
This determines how much content you can have on your dashboard.

Clutter
One of the biggest mistakes people make is when they try to put too much data, visuals,
and information on the dashboard. This is a twofold problem as firstly, the more visuals
you have, the more this will adversely affect the performance. Secondly, there will be too
many visuals and too much other information for the user to understand quickly. Try and
remove all but the necessary information and use one screen, in fullscreen mode, for all
the tiles on your dashboard.

Size and color
Most people read from the top to the bottom of a screen, so put the most important
information in the top-left corner of the dashboard. You could use the Card visualization,
which allows you to make a number or a total stand out with a different font, color, and
size. If everything is the same size on your dashboard, it becomes difficult to know what
is the most important information. Make the more important information slightly bigger,
making it stand out. There are some useful color themes that you can apply to the entire
report, but at the same time, you can customize the color of each data point in a graph to
make them stand out more.

Although there are many more tricks you could apply, the best is to look at the few that I
have mentioned and then play around and practice with creating different dashboards. As
with anything, the more you practice, the better and easier it will become.

Summary 293

Summary
We started this chapter by following some steps. The first step was to retrieve data before
we edited it created the applied steps. We then imported a table so that we could build
relationships between the tables. We created calculated columns and measures before
creating our interactive dashboard. After publishing the content, we then shared our
dashboards and datasets in a variety of different ways. Although this might look like it is
very complicated, the reality is that if you follow these steps, it is a little time-consuming
but a relatively simple process.

In this chapter, we connected data, and although we connected data from a folder, we
could have used the same process to connect data from the web, a portal, or a SQL
server as well. We used transform tools to make sure that only specific file formats were
included, as well as making sure that extensions would always be in lowercase as Power
BI is case sensitive. We created a relationship between different tables so that we could
use Managers of Store as well as the Zip Codes data, before creating calculated
columns and measures. We created the measures that we need for our dashboard using
mathematical equations, before finally creating the dashboard and uploading it.

Personally, I love dashboards as they are so intuitive. They take vast amounts of data and
instantaneously create a visual depiction of what is happening. Not only can this data
come from one place, but it can also come from a multitude of different places, including
other live web pages, such as the stock exchange. By clicking on a query, the tiles showing
the visualizations update immediately and you can see trends.

In the next chapter, we will begin an advanced topic and learn about the M language and
how to work with it.

In this section, you will be introduced to the Power Query program language. We will
look at the basic M syntax and learn how to write M with some examples of M usage,
such as unpivot and pivot, and look at keywords, which load all the library functions
offline in Excel and Power BI. At the end of this section, we will discuss the difference
between M and DAX and look at how results are produced in M.

This section comprises the following chapters:

•	 Chapter 9, Working with M

•	 Chapter 10, Examples of M Usage

•	 Chapter 11, Creating a Basic Custom Function

•	 Chapter 12, Differences Between DAX and M

Section 3:
Learning M

9
Working with M

In this chapter, we will be introduced to the Power Query M language and how to use and
write the syntax, including the steps to reveal a list of functions and definitions.

This chapter will look at the structure and syntax of M. All programming languages
have their own specific syntax and structure, and once you master the structure of M,
it becomes easier to understand. We will look at the main data types and functions and
provide a walk-through demonstration of how to use each of these data types. Some of
the text data types that we will cover include numeric data types, lists, records, tables,
searches, and shares, before looking at how to import a .csv file using M.

In this chapter, we will cover the following main topics:

•	 The beginnings of M

•	 Understanding the M syntax and learning how to write M

•	 Using #shared to return library functions, including function definitions, without
having an internet connection or connecting to an outside data source

This chapter provides an introduction to the M language and how it is used. We will go
through some basic M syntax for writing some programming lines. There will be a series
of simple walkthroughs of different types of programming and we will look at how each of
these types can be used.

By the end of this chapter, you will be able to look at M code and see whether there are
syntax or structural problems and be able to fix them.

298 Working with M

Technical requirements
You need an internet connection to download the relevant files from GitHub. Also, the
code files for the chapter can be found at https://github.com/PacktPublishing/
Learn-Power-Query/.

This chapter assumes that you already know how to open the Power Query editor and
that you are comfortable with using the different commands in the editor. We also
presume that you are familiar with at least one type of programming language, so you will
understand the syntax and logic behind M.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=pQ6Iyh7mxZE&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=10&t=0s.

The beginnings of M
As we have learned so far, Power Query allows you to connect to data sources, as well as
clean, transform, filter and then, finally, publish them. Beyond this, it also allows you to
mash up or collate data from multiple sources. The language is called M, as Mashup is the
jargon name that it started with.

Power Query has a really good interface that allows most people to use it effectively
without doing too much programming. Everything that you create in Power Query is
translated into M. Although we have dabbled a bit with M, we have allowed Power Query
to do most of the work for us. In Chapter 8, Creating Dashboards with Power Query, we
edited M and created our own code when we inserted additional columns. Without M, we
would not be able to write more complex queries, transformations, and calculations. There
are certain things, such as connecting to web services, that can only be done with custom
M code.

The first thing I would like to say is that M is a functional language, and like every
programming language, it has its own structure and syntax. Before looking at the basic
syntax structure, I would like to remind you that M is case-sensitive for both variable
and function names. This is very different from Excel, where you can type in lowercase
or uppercase and Excel changes it to uppercase in the formula. VBA usually changes
the syntax automatically. As an example, when you are using functions, Excel normally
changes the first letter to uppercase. DAX, on the other hand, allows you to use either
uppercase or lowercase, and you can also mix them up in your programming, although
this is definitely not recommended.

Of course, M is found in more than just Power BI Desktop; it can be used in Power Query,
Excel, and the Get & Transform import feature in older versions of Excel.

https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://www.youtube.com/watch?v=pQ6Iyh7mxZE&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=10&t=0s
https://www.youtube.com/watch?v=pQ6Iyh7mxZE&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=10&t=0s
https://www.youtube.com/watch?v=pQ6Iyh7mxZE&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=10&t=0s

The beginnings of M 299

The next section deals with the M syntax and explains the differences between let and
in, which are the basis of the M syntax.

Understanding the M syntax and learning how to
write M
In this section, we are going to look at the syntax of M, explaining what it is, and then
we will go through a few examples. As mentioned earlier, M is made up of individual
language elements, including functions, variables, expressions, and values, which are all
used to transform data.

Let's start by seeing what M looks like when we open it for the first time.

In Excel, open Power Query Editor, and then select Advanced Editor from the View tab:

Figure 9.1 – The Advanced Editor window

By default, we see the following code snippet:

let
     Source = ''
in
     Source

300 Working with M

There are two blocks—namely, the let expression block and the in expression block.
Let's understand each one.

The let expression block contains the programming code—or, as we can call it,
the procedural steps—that we use to define the query. Each one of these steps has a
variable name that has been assigned an expression, and this expression is the logic for
transforming the data. There can be multiple steps, and each step usually evolves using
the step before it, although this is not always the case. The procedural steps do not have to
follow the physical or logical order and can be mixed. This, of course, can be a complete
nightmare for you or anyone else trying to work out what you are trying to do, so the
accepted best practice is to keep them in the correct order. Thus, each query in M is a
single Power Query let expression. This is the code that defines the datasets, and each
procedural step is known as a variable.

The in expression block is an output. I know it sounds wrong, but it will return a variable
value based on let.

Looking at figure 9.1, the two blocks come up automatically and all we need to do is
populate them. I have entered Hello World into the let expression block, and
when we run this, we get Column 1 with Hello World in it. Although this is not very
impressive, it does give us an indication of how the syntax works.

Important note
There are a few other basic things to note when writing in the let expression
block. For example, you need a comma (,) at the end of every line, except for
the line before in. Variable names are normally one word, using camel case
or an underscore (_), but if you would like a long variable name with spaces,
then you need to use # followed by the variable name in quotation marks (for
instance, #'This is the long variable name'). The variable
names can also include special characters, such as % or &. The variable name is
also the name of the applied steps found on the right-hand side of the screen.

To use comments, you can use // at the beginning of the line (the same as in
JavaScript). Parentheses (()) are used to pass parameters to a function. Square
brackets ([]) are used to encapsulate a set of records. Set braces ({}) are used
for lists.

Most of the functions in M are part of an object class, and the syntax is as follows:

ObjectClass.Function(),

ObjectClass.Function(Parameter),

ObjectClass.Function(Parameter1, parameter2)

Using #shared to return library functions 301

There are a few functions that came out in the original release of Power Query that
do not follow the same object class name, such as the date. To use the date, we write
#date(), and it is then followed by three parameters—year, month, and day.
This will be discussed in greater detail in Chapter 10, Examples of M Usage.

The basic M syntax is relatively straightforward, provided that we follow the correct
structure with let and in. The one trick to remember is to look at the type of
parentheses that are used to determine whether we are dealing with variables or lists,
or whether we are trying to encapsulate a set of records.

In the next section, I will go through a number of different examples of M code. Some
of the code will not need data sources as the values will be generated by the code itself.
Of course, using the same techniques, we will be able to use the same functions on any
data source.

Using #shared to return library functions
In this section, we will look at the #shared libraries, which loads functions and
enumerators in a result set. This means that we do not need any datasets as the code
that we create will automatically make use of the #shared libraries. We will concentrate
on creating text data types, numeric data types, lists, records, tables, searches, and shares,
as well as importing a CSV file. With each of the different types, we will write the code
so that we can see how it works and be able to apply it to other programs. We need to
associate data with data types so that M knows whether the data is text, a number, or a
string, and so on. We will briefly look at each of the most common data types and see the
similarities and differences between them.

Text data types
We already created one example of this at the beginning of this chapter, Hello world.
You will notice that it was not necessary for us to explicitly assign data types as the
variable object as data types are assigned automatically. Referring to figure 7.1, if you look
to the left-hand side of Hello world, you will see that it has a text data type (ABC) in the
output window on the right. Although there is one text data type, there are many different
ways in which we can use it.

One of my favorites is the Text.format() function, which allows you to insert values
into a piece of text. For example, take the following command:

Text.Format('#[StudentName] has chosen #[Subject]',
[StudentName ='Alice', Subject ='Maths'])

302 Working with M

From the preceding example, the sentence would become Alice has chosen
Maths. This same function can be used to pass a list instead of a record, as in the
following expression:

Text.Format('The first number is #{0}, the second number is
#{1}, the third number is #{2}',

{15,9,29})

This would return the following text:

The first number is 15, the second number is 9, the third
number is 29.

The next data type is the number data type, which, as its name implies, deals with
numbers and number formats.

Number data types
If we look at a simple number data type, we can see that when it is complete, it
automatically assigns the number data type to it. Let's see how this works.

Create a new blank query and type the following:

let

    variable1 = 5,

    variable2 = 10,

    variable3 = variable1 + variable2

in

    variable3

From our comma-delimited list of variable declarations, we get an answer of 15. You will
notice that I have three different variables—the first two variables have a number assigned
to them, while the third variable refers to the value of the other two. If you look at the
APPLIED STEPS section, the three variables have been turned into steps alongside the
query. Refer to the following screenshot:

Using #shared to return library functions 303

Figure 9.2 – Steps inside a query

If we wanted to change the variable name by creating a space, we can do so, but then we
would have to have #'variable 3' for it to work. If you look at the preceding code,
it looks like procedural code that works from the top to the bottom. The Power Query
engine starts by looking at what we need for our let expression. In this case, we are
looking for the value of step3. It will then look at what step 3 is, and then it will have to
evaluate step 1 and step 2 as they are mentioned. If step 1 is not needed, the Power Query
engine will not look at it, even though it is the first step.

One of the other things that can be really useful is that it is possible to refer to the output
of other queries. We already have a query called Number that we have already created. If
we wanted to call that query, we wouldn't have to have the let or in expression blocks;
we can delete everything and type in Number, and the output of the Number query will
be displayed.

The number data type is used very often as most of the time we work out totals, averages,
and other mathematical formulas. The number data type can include integers, decimals,
and currency.

We use lists in programming all the time, from numbers to objects and everything in
between. The next section will look at how we can create lists, including nested lists.

304 Working with M

Lists
Lists are ordered sets of values. To create a list in M, open the Power Query editor and
type the following:

let

    fruit={'Apple','Grapes','Pear'}

in

    fruit

On the left-hand side, you will see that this is a list data type, but there is also a List Tools
menu that appears. Refer to the following screenshot:

Figure 9.3 – The List Tools menu

With this menu, you can convert the list into a table, remove items, and do much more. As
an output, the list we created is an ordered list; Apple will be first and Pear will be last.

It is possible to have nested lists that are separated by {},{}. For example, type
the following command:

let

        fruitNested ={{'Apple','Grapes'},{'Limes','Lemons'}}

in

    fruitNested

If you click on the first list, you will see that the items in this list are at the bottom.

Using #shared to return library functions 305

It is possible to do things with numbered lists that would save you time—for example, you
could type numbersToTen = {1..10}, which will give you all the numbers from 1 to 10.

We can now expand on lists to create records, which are lists of fields.

Records
A record is written as a comma-delimited list of fields with the values that are associated
with the various fields. They are written with square parentheses ([]). Let's see how
this works.

Create a new blank query and type the following into the Advanced Editor window:

let

    record = [firstName='Warren',surname='Sparrow',title='Mr'],

in

    record

From the preceding record, we can see that we have formed a comma-delimited list of
fields. There are three different fields—firstName, surname, and title—and the field
names and the values associated with them are recorded after each equals sign:

Figure 9.4 – The Record Tools menu

On the left-hand side in the query, you will notice that the icon for a record is next to this
query, and there is also a Record Tools menu.

306 Working with M

Once again, we can expand on the records and use them to create table data types.

Table data types
The table data type is probably the most important structured data type. You could think
of it as being made up of a combination of lists and records.

Create a new blank query and type the following into the Advanced Editor window:

let

    Source = #table({'A','B','C','D'},{{'1','2','3','4'},{'10',
'11','12','13'}})

in

    Source

The #table function is a function that will create a table for us. There are two parts to
this. The first list is the names of the column names in a text data type. In this example, the
column names are A, B, C, and D. The second list, and each additional list, creates one item
in each column for each row, as follows:

Figure 9.5 – The Table data type

There is now a Table data type in the query, so we know that this has been associated with
the table data type. Notice that some of the data types in the column headings use the
ABC123 icon, which depicts any data type. We would need to associate a specific data
type later to correct this.

There is a different way of creating a table, but it is slightly more complicated.

Using #shared to return library functions 307

Try it out by typing the following:

Source = #table(type table[A=number, B=number, C=number,
D=number],{{1,2,3,4},{100,101,102,103}})

In the preceding code, we created a table, but this time, the code says that the data type
is a number, so we will not have the problem of it showing the ABC123 icon as this is a
generic data type. If we wanted to change the data type to a number data type, we can
change this to the number data type—123.

One of the things that we need to do once we have the data is search or find the specific
data that we are looking for. The next section deals with how we can find relevant data.

Searching for relevant data
In the previous section, we learned that tables are made up of a combination of lists and
records. So, this is important as we can find values from lists, records, and tables by using
either the positional or lookup operator.

Let's see how.

Create another blank query and, in the Advanced Editor window, type the following:

let

    fruit={'Apple','Grapes','Pear'},

    numbersToTen = {1..10}

in

    numbersToTen{2}

In the preceding code, we have a variable called numbersToTen, which is all the integer
numbers from 1 to 10. In the in expression block, we are asked for the number at index
2. When we run this code, we will get the value 3 because the index starts at 0, not 1. So,
the value at index 0 will be 1, the value at index 1 will be 2, and our answer will be the
value at index 2, which is 3.

If we changed the last line of the preceding code and we typed in fruit{0}, we would
get the value of Apple as our answer. If we type in fruit{6}, we would get an error
message as a result, as we do not have enough items in our list. However, if we typed in
fruit{6}?, we would get an answer of null, as the question mark will say that we are
out of range and returns null.

308 Working with M

Using the {} parentheses allows us to do a search for the nth item in a list, and we can use
exactly the same process to search for a record.

We can use the same function to find lists and records from a table. Create a new blank
query and, in the Advanced Editor window, type the following:

let

    Source = #table({'A','B','C','D'},{{'1','2','3','4'},{'10',
'11','12','13'}}),

    Output = Source[A]

in

    Output

The source table has fields with the A, B, C, and D headings, and it then has numbers in
the rows underneath. The preceding code is similar to what we have used before, with
Output = Source[A] as the only difference. From the square bracket ([]) operator,
we get an individual field from a record, but the source, in this case, is a table, so this will
give us all the items in column A as a list.

If we change [A] to {A}, this will change the search to the first row and give us a result of
1, 2, 3, 4.

We can also put this together and type = Source [A]{A}, which will give us the value
in the first row and first column.

Of course, there are so many different functions that are already built into M, and we
have only touched on the most common ones. If you create a new blank query and type
= #shared, this will give you a list of all the different functions that are available for
use. It will display a record and each field is a name of a function that you can use. You
will notice that these have functions as their data type. When you click on one of the
functions, it will give you a preview, as well as the documentation for that function.

Up to this point, we have only used code to create the data that we needed. The next
section deals with how to import a CSV file using M.

Importing a CSV file using M
One of the things that we do on a fairly regular basis is open CSV or Excel files. Although
we can do this within Power Query, if we wanted to do this with M, we could do so in two
different ways. The first way is to use the Advanced Editor window in the Power Query
editor, and the second way is to type M into the formula bar in the Power Query editor.

Importing a CSV file using M 309

When we open Advanced Editor, we can type the following:

let

    salesData = Csv.Document(File.Contents('C:\DataFiles\sales.
csv'),     [Delimiter=',', Encoding=1252])

in

    salesData

If, however, you wanted to type this in directly without using the editor, then type
type = Csv.Document(File.Contents('C:\DataFiles\sales.csv'),
[Delimiter=',', Encoding=1252]) into the formula bar, which will do the
same thing.

This will then import the CSV file, but there are two problems with this. The first is that
there is a blank column, and the second is that we need to promote the first row
as headers.

To remove the column, open Advanced Editor and add the following to the next line:

RemoveCols = Table.RemoveColumns(salesData , 'Column3')

You can view this in the following screenshot:

Figure 9.6 – Removing columns

310 Working with M

Once we have removed the columns, we can then move on to the second step, which is
promoting the headers:

.

Figure 9.7 – Promoting the headers

Lastly, to promote the headers, type PromoteNames = Table.
PromoteHeaders(RemoveCols, [PromoteAllScalars=true]).

This section has helped us go through the basics of how to use the M syntax with examples
on how to use the most common data types and functions, including text, numbers, lists,
tables, and records.

Summary
This chapter provided us with an introduction to how M is used. You have now acquired
the necessary knowledge to understand how the syntax is used, and you should be able to
look at some code and work out how it works. It makes life a great deal easier when you
can look at code and determine what it is doing, especially if there is a problem that you
need to solve.

Summary 311

In this chapter, we covered how M came about and how it works, and how it is a
functional language that has its own structure and syntax. We made a quick comparison
between M, DAX, and VBA with regard to structure and syntax, before looking at how to
write M code. Although we have mostly used the Advanced Editor window in the Power
Query editor, using the same code, we could type it into the formula bar; however, it is
better to use the editor, as once your code goes over multiple lines, it is not always easy to
spot a mistake in the formula bar.

This chapter included many working examples, going through text data types, numeric
data types, lists, records, tables, searches, shares, and importing a CSV file. I find these
particularly helpful, especially as each section is an entity in itself, which allows you to
use a specific piece of code in other queries that you have already created. Having gone
through the main data types, it should be evident just by looking at the data type in the
query what it is associated with and which type of parentheses you should be using. The
last section covered importing a CSV file, and although we have done this previously in
this book, I felt that it was necessary for us to be able to see the code and the steps and
understand what the code is doing.

The next chapter will deal with the aid of M with more in-depth scenarios and formulas.

10
Examples of M Usage
This chapter concentrates on a few examples of M usage, including the concatenate function.
We will first compare the difference between formulas in Excel and Power BI, before looking
at the ampersand operator (&) and how it can be used. We will go through an example of
how you can do this by using a simple name and surname concatenation formula.

We will examine how Text.From and Text.Combine can be used to join and
concatenate different strings, dates, and columns. We will also learn how to set up our
own SQL server legally and for free to use for non-commercial purposes; it will have full
functionality. In doing this, we will also cover how to import the AdventureWorks
databases into SQL to use them as a resource.

Lastly, this chapter concentrates on parameters and how they can be used effectively to
filter data sources, adding parameters to control statements that allow us to filter them
according to different dates. We will continue by adding parameters to order objects and
columns in ascending and descending order, before looking at how we can make these
changes in Power BI's Data view. Some of the skills that we will cover include defining
various parameters, as well as creating and renaming them.

In this chapter, we will cover the following main topics:

•	 Merging using the concatenate formula

•	 Data type conversions

•	 Setting up a SQL server

•	 Using parameters

314 Examples of M Usage

Technical requirements
You need an internet connection to download the relevant files from GitHub.
Also, the code files for the chapter can be found at https://github.com/
PacktPublishing/Learn-Power-Query/.

This chapter assumes that you understand the M syntax and structure and know how to
code text data types, numeric data types, lists, records, tables, searches, and shares. You
should also know how to import a CSV file. If you are unsure on how to do this, please
refer to Chapter 9, Working with M.

You will also need to have a SQL server. If you do not have one, I will show you
how to download and install a free version of SQL Server legally. You will also
need the AdventureWorks database, which can be found at https://docs.
microsoft.com/en-us/sql/samples/adventureworks-install-
configure?view=sql-server-ver15.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=mzRQLLQCmvg&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=11&t=1s.

Merging using the concatenate formula
I am always amazed by how many different ways data is exported from a CSV file
depending on where it comes from. With student and project management software,
how the data was typed in sometimes also makes a difference. A typical way in which a
person's name and surname is displayed is SMITH, John. In Excel, it is possible to take
this field using the Text to Columns comma-delimited method to split the name and
surname into two columns, as shown:

Figure 10.1 – Excel concatenation

https://github.com/PacktPublishing/Learn-Power-Query/
https://github.com/PacktPublishing/Learn-Power-Query/
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://www.youtube.com/watch?v=mzRQLLQCmvg&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=11&t=1s
https://www.youtube.com/watch?v=mzRQLLQCmvg&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=11&t=1s
https://www.youtube.com/watch?v=mzRQLLQCmvg&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=11&t=1s

Merging using the concatenate formula 315

You can then concatenate the two cells using the appropriate formula, and you can use the
Proper function to get the correct case. Of course, this is time-consuming and there is no
quick way of doing the first step automatically. The other problem is that if you are doing
this with multiple different documents, it is a complete nightmare.

This first section will compare what we have just done in Excel with getting the same
result in Power BI. You will soon see how much easier it is to use Power BI and the
advantage of this is that once you have created this step, you can use it with different data
sources, and Power BI Desktop will do this automatically for you.

So, this is what we do:

1.	 Launch Power BI Desktop and select Excel from the Get Data tab.
2.	 Select names.xls and click Open.
3.	 Select the SurnameNames tab, and then click on Transform Data.

Depending on the version of Power BI Desktop that you have, the Transform Data tab
may not be in the same place as in the following screenshot. In the latest version of Power
BI Desktop (June 2020), you need to select Split Column from the Transform tab. If you
have an older version of Power BI, you will need to select Data source settings from the
Transform data group under the Home tab:

Figure 10.2 – The Split Column menu

316 Examples of M Usage

Our delimiter is a comma, but if it were something different, this is where you would change
it. There are a few extra options when selecting the advanced options, such as splitting it into
columns or rows, but for now, we will keep the default settings and click OK.

We have now split our original column into two columns, but the surnames are in
uppercase and we want them to be in title case. There are two different ways in which we
can make this change

•	 The first way is to write some M code: = Table.
TransformColumns(#"Changed Type1",{{"Column1.1", Text.
Proper, type text}}. Here, you will notice that we have asked to change the
case of the first column, Column1.1, to Proper or title case. The one good thing
with this is that it uses the same code as Excel—proper.

•	 The second way is to right-click on the Column 1.1 heading and select Capitalize
Each Word from the Transform menu, as shown:

Figure 10.3 – Capitalize Each Word

Merging using the concatenate formula 317

The last step is to concatenate the two fields that we have. In order to do this, we will
create a new custom column and use a formula that has a [Name]&" "&[Surname]
syntax. Here, we are selecting our two fields—Name and Surname—and we are
combining them. The " " characters create a space between the Name and Surname
fields to prevent this from becoming one string. We have to remember that we want Name
first and then Surname, so when we write the code, we need to refer to Column2 and
then Column1.

Click on Custom Column from the Add Column tab and type [Column1.2]&"
"&[Column1.1]. As you are typing, the relevant field names will appear, and you can
press the Tab key to accept them and then continue typing:

Figure 10.4 – The available columns

318 Examples of M Usage

An alternative to this method is to merge the two columns. Select Add Column Menu
and click on Merge Columns. Choose Custom from Separator and set - as the separator.
Click OK when done:

Figure 10.5 – The merge method

In the following screenshot, you will see that I have promoted the names and deleted the
first row to make it look pretty, but the reality is that you would want to delete the first two
columns and only have the Full Name column that you created:

Merging using the concatenate formula 319

Figure 10.6 – The completed concatenation

The completed file has taken less than 4 minutes to change from start to finish, and
that includes if you typed in the formula yourself without using the shortcut to convert
the column to title case. I personally find that this saves me so much time as I have so
many different class lists that need to be converted from a CSV file that I had extracted
from somewhere into a proper name and surname, which are then used in other
documentation. The beauty of this as well is that it does not matter whether the usernames
are in lower or uppercase as you can transform them with one of the previous steps. I
personally like to create another step and create a title case version of the first names as
well so that they always look the same.

There are times where you might want to do the reverse of this, where you have a name
and surname and you want to concatenate them into one string so that they can be used as
the login name, as a username for software, or something similar.

I am going to use the same file, but this time I will use the Names tab for my data
source. You can follow all the same steps, but when you create the custom column,
the formula will be slightly different. Instead of using " ", you would simply type
=[Column2]&[Column1]&[Column3].

320 Examples of M Usage

In the following screenshot, you will notice that I have a column that gives me the year
that each person started working at the company, which I use in their username:

Figure 10.7 – Creating usernames

If you use this formula, you get an error as Power BI is trying to concatenate text and
number data types together. This is possible to do in Power BI and will be discussed in the
next section of this chapter. As I wanted to have text data types for their username, a quick
way around this is to convert the number into a text data type, which then allows me to
concatenate them all together without any problems.

In this section, you have seen the benefits of concatenating different fields in order to use
the transformed data for other applications.

The next section deals with more complex data type conversions, which will build on your
knowledge from Chapter 9, Working with M.

Data type conversions 321

Data type conversions
In the previous section, we tried to concatenate a text and number data type together,
which produced an error message. The same thing happens when we try to add a date or a
few other things as well. In this section, we will look at the different ways in which we can
join various data types.

To join two different data types, we can use the Text.From function. This function allows
us to input a number, date, time, or even a binary value and it will return the numerical
representation of that value. For example, if we type Text.From(7), it will give an answer
of 7. This, however, is not the number 7—it is text that represents the number 7. One thing
to remember is that if the value is null, then Text.From will also return null. We can use
the Text.From function to convert not only numbers, but also dates and times.

There are a number of different ways in which we can concatenate data using the
ampersand operator (&). In Excel, the easiest way to concatenate is to use the & symbol.
If we want to concatenate the Title, Name, Street, City, Zip Code, and Country
columns from the following screenshot, we could type =C2&" "&A2&CHAR(10)&D2&"
"&E2&CHAR(10)&F2&" "&G2:

Figure 10.8 – Concatenating using the & symbol

322 Examples of M Usage

I specifically have not put the columns in the correct order so that I can demonstrate that
it does not matter in which order you concatenate the data. I have also used CHAR(10),
which creates a line break so that it looks more structured than one long string of text.

We can also do this in Power Query and Power BI as it involves data transformation:

1.	 Open the Address.xlsx document and then add the table to the Power
Query editor (Select this from Table/Range in the Data tab). We will use the
Text.Combine function to convert all the fields that are not text fields into text
types. This includes the fields that have a generic data type and shows both the text
and number data types.

2.	 To add a step, we can either right-click on the applied steps and then select Insert
Step After or we can click on the fx icon.

Paste the following formula into the formula bar:
= Table.AddColumn(#"Changed Type", "Address Labels", each
Text.Combine(Record.ToList(_),"#(lf)"))

This formula creates a new column called Address Labels and concatenates the
data from the other fields from left to right. #(lf) is the Power Query line break
character that is the same as CHAR(10) in Excel.

When we concatenate strings, we can either use the CONCATENATE function or we can use
the % operator. They are very similar, but if we are using the CONCATENATE function, then
there is a 255 string limit. The reality is that 255 characters are not going to be used, and many
people prefer to use the CONCATENATE function as it is slightly easier to read. However, I
personally prefer using the % operator. At the end of the day, use the method that you prefer.

We will next look at using basic operators, but you will need a SQL server. If you already
have a SQL server, then you can skip the next section and load the database into your SQL
server. If you do not have a SQL server, then the next section covers how to set up a legal
and free SQL server on your computer.

Setting up a SQL server
In this section, we will need a few more things to run the server effectively. I realize that
many individuals do not have their own SQL server, but you can download SQL Server
Developer edition for free. The major difference between SQL Server Developer edition
and the other editions is that although the Developer edition has almost all of the same
features as the Enterprise edition, it is not for commercial use. If you want to see the SQL
datasheets that compare the various versions, you can download them from https://
www.microsoft.com/en-au/sql-server/sql-server-2017-editions.

https://www.microsoft.com/en-au/sql-server/sql-server-2017-editions
https://www.microsoft.com/en-au/sql-server/sql-server-2017-editions

Setting up a SQL server 323

You will also need a Microsoft or an MSDN subscription, which is free, to download the
relevant files. I am currently running the 2017 version, but you can download the SQL
2016, 2017, or 2019 Server Developer editions. There are a few differences among them,
but overall, they are very similar. Please note that depending on the version that you
download, the file size will, on average, be between 2.9–4 GB.

There are a few different ways in which you can download the Developer edition. If you
have a slightly older computer, you might want to download SQL Server 2016 Developer
edition, which can do everything except advanced Transact-SQL (T-SQL) querying,
which we will do later in this chapter. Since advanced T-SQL querying isn't available on
this version, I would not recommend using this edition unless you have an old computer.

There are two different ways to download and install the software.

The first way is to download SQL Server Developer edition from https://
my.visualstudio.com/Downloads?q=SQL%20Server, shown as follows:

Figure 10.9 – The various SQL Server options

https://my.visualstudio.com/Downloads?q=SQL%20Server
https://my.visualstudio.com/Downloads?q=SQL%20Server

324 Examples of M Usage

At this point, you can decide which version you would like to download. They can all be
installed in very similar ways.

Once the file has been downloaded, there are a number of steps you will need to
follow. Some steps can be skipped, but others have to be completed correctly. Let's go
through them:

1.	 The first step is the Planning steps (which shows you the steps you will be
following. Apart from reading this, there is nothing more to do). You can skip
this step and move on to the Installation step if you wish:

Figure 10.10 – The Planning steps

Setting up a SQL server 325

2.	 The Installation step is where you choose what you would like to install. Select New
SQL Server stand-alone installation or add features to an existing installation
and then wait for the window to pop up:

Figure 10.11 – The installation step
It sometimes pops up behind the current window, so you might not always see it
straightaway. The easiest way is to move the current window to the left or right so
that it is possible to see when another window opens.

3.	 You will see the Product Key window; you need to choose Developer from the
Specify a free edition drop-down list box.

4.	 Once selected, click on Next and accept the I accept the license terms option before
clicking on Next again.

5.	 The next window is the Install Rules window, which verifies the Active Template
library, the registry keys, and whether the computer is a domain controller. Do not
worry if a warning from your firewall appears.

326 Examples of M Usage

6.	 The next step is Feature Selection, and this is where you can choose additional
features to install:

Figure 10.12 – The additional features
Select Database Engine Services; the other features are not needed for this exercise,
although this is the time to install any additional features if you would like to
continue using them after finishing this chapter.

7.	 The next step is Instance Configuration, and this is where we create and name
our instances. Your screen might look different to this and not have any instances
already installed:

Setting up a SQL server 327

Figure 10.13 – Instance Configuration

If you do not have any other instances, it is fine to use the default one—MSSQLSERVER.
At this point, I would like to mention that while you only need one instance, this exercise
looks at using parameters from two different instances, so it might be useful to create a
second instance.

In Database Engine Configuration, you have the option of selecting which method you
would like to use to authenticate. Personally, I like to use Mixed Mode, which allows both
Server and Windows Authentication. Click Next until everything is finished and installed.

328 Examples of M Usage

We will now look at the second way to download the software, which is from Microsoft
Visual Studio Dev Essentials:

Figure 10.14 – Visual Studio Dev Essentials

You will have to agree to the terms and conditions and sign in with your Microsoft or
MSDN account. You can download the Visual Studio Community tool if you like, but it
is not essential. The site has changed; the SQL Server editions used to be on the first page,
but they have now moved to under the Downloads section.

After selecting the developer version that you would like, select and download the file.
This will download an ISO file, which you will either need to extract or burn onto a DVD.
I find extracting the ISO file easier and less time-consuming than burning it to a disk.
Once it is extracted, you will need to run the setup file. You then follow exactly the same
instructions as in the previous steps. It takes a few moments to complete the installation,
but you then have a SQL server that you can use.

Installing SQL Server Management Studio 329

Installing SQL Server Management Studio
The next step is to connect to the SQL server using Microsoft SQL Server Management
Studio (SSMS). Although there are a number of ways to connect and update databases,
I find this one of the easiest. You can either click on Install SQL Server Management
Tools, shown in figure 10.11, or you can open an internet browser and go to https://
docs.microsoft.com/en-us/sql/ssms/download-sql-server-
management-studio-ssms?view=sql-server-ver15. Download the
Microsoft SQL Server Management Studio setup file. It is roughly around 550
MB in size, so depending on your internet speed, it should not take too long. It does take
longer to install the software, so you might have to wait approximately 10 minutes:

 Figure 10.15 – The SSMS installation

Once the software has finished installing, you will need to restart your computer.

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15

330 Examples of M Usage

Open SSMS and Connect to the server by typing in the server name of the database that
you created in the previous step:

Figure 10.16 – Connecting to the SQL server

If you have successfully connected, you will see the Object Explorer panel. We need
to update the database that we will use for this exercise. For this example, we will be
using the Microsoft AdventureWorks database, which can be found at https://
docs.microsoft.com/en-us/sql/samples/adventureworks-install-
configure?view=sql-server-ver15.

Once again, you have the choice of downloading different versions, but I am using the
four versions prior to and including the 2017 DW version. For this exercise, it might
be worthwhile downloading more than one of the databases so that we can change the
parameters to read another database, although it is only necessary to download one and
then do the same steps to create the other parameters.

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15

Installing SQL Server Management Studio 331

Download the files, which we will now use to restore the database in SSMS:

Figure 10.17 – Restoring the AdventureWorks database

332 Examples of M Usage

Right-click on Databases and then select Restore Database…. Select Device in the
Source section and click on the three ellipses (…). Locate the file that you have saved
and then click OK. Refer to the following screenshot:

Figure 10.18 – Adding the AdventureWorks database

This will restore the entire database. Depending on which version you downloaded, the
name of the database will now be visible on the left-hand side:

Installing SQL Server Management Studio 333

Figure 10.19 – The AdventureWorks DW databases

You will notice from the preceding screenshot that I have used the same steps to restore
the other versions of AdventureWorks. My one bit of advice is that if you want another
user to be able to access the database, then right-click on Users in the Security folder
to add another user. All our instances and databases are now set up. The next step is to
connect to them via Power BI Desktop.

334 Examples of M Usage

To connect to the SQL server from Power BI Desktop, select SQL Server from Get Data.
The trick is to remember what you called your server name.

Refer to figure 10.20 to remember what you called your server. In Power BI, type in
./servername, and then click OK:

Figure 10.20 – Connected SQL

You will notice that in the preceding screenshot, I created two instances so that I can
demonstrate switching between servers and databases for this exercise; but once again, if
you only have the one instance, this will still work.

Now that we have the AdventureWorks database and a SQL server with instances, we
can now connect to them and look at how we can use the different query parameters.

Using parameters 335

Using parameters
In this section, we will look at the Power BI Desktop query parameters, which provide a
kind of way in which we can filter data. There were some developments and updates made
to Power BI Desktop in 2016 that improved the ability to create parameters and use them
in various ways. The most common ways that we can reference parameters are through
data sources, filter rows, keep rows, and remove and replace rows. It is also possible to
load the parameters into the data model so that we can reference them from measures,
calculated columns, tables, and reports.

Parameterizing a data source
In this section, we will look at how we can connect different data sources that have been
defined in query parameters to load different columns or connections to data sources. One
of the great things is that certain pieces of software, such as Salesforce objects, SharePoint,
and Power BI Desktop, allow you to use parameters when defining your connection
properties. This means that you can have one parameter for the SQL server instance and
another parameter for the target database.

Parameters are independent of datasets, which means that you can create the parameters
before or after you have created or added your dataset. When we created a parameter in
Chapter 4, Connecting to Various Data Sources Using Get & Transform, you will remember
that we had to define the parameter and we set the initial values in the Power Query
editor. After creating the parameters, they are listed in the Queries pane, which is where
we can update and configure the parameter settings later.

Pretend that you have different customers who are using the same database structure,
but they might be using different instances of SQL Server and they would typically have
different database names. Using query parameters, we can switch between the different
data sources and then publish reports to the different Power BI services. Let's see how to
do this:

1.	 Open the Power Query editor and click on Manage Parameters from the
Home ribbon.

336 Examples of M Usage

2.	 In the Name textbox, type SqlSrvInstance, and then type a description of your
choice into the Description textbox. The next bit of the setup might be a little bit
different, depending on how many instances you have, but you will have to make
sure that one of the instances that you are using is a real SQL Server name. You will
need to add a .\ character before your SQL Server name:

Figure 10.21 – Setting the parameters

3.	 For Type, select Text, and then select List of values from the List of values drop-
down list box. A grid will appear, and every time you press Enter, it will create
another line for you to type in.

4.	 Type in the SQL Server instance and make this the default value and current value.

5.	 Once you click on OK, this will close the Parameters dialog box. Add this
parameter to the Queries pane. You will see the current value in parentheses:

Using parameters 337

Figure 10.22 – Instance in the Queries pane
We are going to do exactly the same thing, but this time we are going to connect
to the different databases that we have. This will then create the parameters that
we need for the database that we require. Use the information from the following
screenshot to create the Database parameter:

Figure 10.23 – The AdventureWorks database's Database parameter

338 Examples of M Usage

6.	 Click on OK, and then on Close & Apply. We have now created the connection
parameters and we can connect to the SQL Server instance to retrieve the database
that we need.

7.	 We will use T-SQL to run this query. We will need to check that the Require user
approval for new native database queries property is disabled for this to work:

Figure 10.24 – Disabling native database queries

8.	 In Power BI Desktop, select Options and Settings from the File menu, and then
click on Security.

Using parameters 339

9.	 Back in Power Bi Desktop, select SQL Server Database from the Get Data tab,
before clicking on Connect.

10.	 Choose SqlSrvInstance from the Server drop-down list box and choose the
Database option for the Database parameter:

Figure 10.25 – The Server parameter

11.	 Click on the Advanced options arrow and paste the following T-SQL statement into
the SQL statement box:

SELECT h.SalesPersonID AS RepID,

 CONCAT(p.LastName, ', ', p.FirstName) AS FullName,

 CAST(SUM(h.SubTotal) AS INT) AS SalesAmounts

FROM Sales.SalesOrderHeader h INNER JOIN Person.Person p

 ON h.SalesPersonID = p.BusinessEntityID

WHERE h.SalesPersonID IS NOT NULL

 AND YEAR(h.OrderDate) = 2012

GROUP BY h.SalesPersonID, p.FirstName, p.LastName

ORDER BY FullName ASC;

340 Examples of M Usage

12.	 Click OK, and if everything is working correctly, you should get a preview that
looks similar to the following:

Figure 10.26 – Preview of the script

If you look at the top of the preview, you will notice our two parameters—
SqlSrvInstance and Database. So, this means everything is connected to the
correct default parameters.

Click on Load, and this will load to the dataset. Before continuing, you might want to
rename this to something more appropriate by either right-clicking on the Fields panel on
the right or by clicking on the ellipses (…) on the right-hand side and then renaming it:

Using parameters 341

Figure 10.27 – The completed source parameter

The beauty behind this is that we have created two different parameters that we already
set up for different SQL Server instances, as well as different databases. We can use the
same parameters for different datasets, which means you can use the same connection
information every time you have a dataset that uses the same data source.

If we look at the M statement that was generated when we used the T-SQL statement
earlier, notice how easily the parameters have been referenced:

= Sql.Database(SqlSrvInstance, Database,

Although we have created two parameters, we still have Filtered Row in APPLIED
STEPS in the preceding scenario. In the next section, we are going to look at how we can
convert a date into a parameter.

342 Examples of M Usage

Adding parameters to filter data
We can add in additional parameters so that it is possible to filter according to more
than one thing. Part of the code that we used earlier is AND YEAR(h.OrderDate)
= 2012#. What we can do is replace 2012 with a parameter, which will allow us to
change the year with a new parameter. Go through the same steps as before (under
Parameterizing a data source), but this time, create a parameter called YearSales and
use a range of 2011 to 2014 for the list of values:

Figure 10.28 – The completed source parameter

Using parameters 343

Now that we have created the new parameter, we will need to change 2012 to " &
YearSales % " (with the quotation marks) in the M code:

Figure 10.29 – Changing the year M code to a parameter

It is possible to see how well the new parameter works by selecting a different year and
then going back to the RepSales parameter and viewing the sample. You will notice that
each time you change the year, the figures are different. You might also notice that when
you select the 2015 year, there is no data for this and the preview is blank:

Figure 10.30 – Selecting different years

344 Examples of M Usage

It is possible to expand on this and do more than just change the text. We can use parameters
and change mathematical formulas as well, which we will look at in the next section.

Adding parameters to control statement logic
Up until now, all of the parameters that we have created change text from something
to something else. It is possible to make the text do additional things, such as carry out
mathematical equations. For example, we can change SUM to AVG, and this will then
carry out a different equation. Although it is possible to use these in just about any
mathematical equation, I am going to demonstrate SUM, AVG, MIN, and MAX

Create another parameter and call it MathsAgg with the values of SUM(h.SubTotal),
AVG(h.SubTotal), MAX(h.SubTotal), and MIN(h.SubTotal):

Figure 10.31 – The completed MathsAgg parameter

Using parameters 345

In the database, there might be various columns with figures that we could apply this
to. For example, there might be a DiscountAmounts column and we could then use
the MIN(h.DiscountAmounts) formula to work out the minimum amount for this
column. We can have different parameters for each column, but only if the different
datasets can support this.

We will once again need to update the M statement by replacing SUM(h.SubTotal)
with " & MathsAgg & " (including the quotation marks):

Figure 10.32 – The completed MathsAgg M code

Once again, if your dataset allows for this, you could use the same parameter that you
created here and apply it to a different parameter that you created before—for example,
the DiscountAmounts column that we mentioned earlier.

We have now used different mathematical aggregate functions and used them in a
parameter, but in the next section, we will look at how we can use other built-in functions
to create parameters to order things.

346 Examples of M Usage

Adding parameters to order objects
We can order columns in Excel and Power BI using either the ascending or descending
formula. We can use functions such as ordering on parameters to order various columns.
With this, it is possible to use various columns as our values, which means that we can not
only choose whether we would like something to be in ascending or descending order, but
we can also have the different column names to choose from.

As we did earlier in the preceding section, we will create another parameter and call this
one OrderResults. We will create four different values in our list—FullName ASC,
FullName DESC, SalesAmounts ASC, and SalesAmounts DESC:

Figure 10.33 – The OrderResults parameter

Once the parameters have been created, change the M statement by changing FullName
ASC to " & OrderRes & " (including the quotation marks):

Using parameters 347

Figure 10.34 – The completed OrderResults parameter

In this chapter, we used parameters to filter different scenarios. In earlier chapters, we
predominately used APPLIED STEPS to filter the data that we required. One of the
problems with APPLIED STEPS is that everything is set in stone, and once you have the
steps in order, it is not always that easy to change things around. Parameters, however,
allow you to change multiple things without APPLIED STEPS as you are adding a type of
filter, which is applied to the datasets and is then applied.

The one bit of advice that I do have at this point is that when you are creating your
templates, every time you create a new parameter, you should apply and save the changes
in a different filename. For example, in this section, we have created five different types
of parameters, and I have named my file Chapter10.Parameter1, Chapter10.
Parameter2, and so one. This was done for two reasons:

•	 I have a completed file for each parameter that I could use as an example.

•	 If I broke the M code at any time, I could always revert to the previous file.

The one drawback to using parameters is that up until this point, we have opened
the Power BI Query Editor to change the parameters that we needed, which is time-
consuming, but we can do this directly in the Data view. Let's look at that next.

348 Examples of M Usage

Using parameters in the Data view
From the Data view, it is possible to change all of the parameters that we have created
without having to go into the Query Editor, which makes things quicker and easier.

Click on Edit Parameters under Transform data in the Home ribbon, which will bring
up the Enter Parameters window:

Figure 10.35 – The parameters from Data

The window itself is self-explanatory, and you can use the drop-down list boxes next to
each parameter to choose the relevant filters that you would like. Once you are finished,
click on OK, which will automatically filter according to the parameters that you have
chosen. It is also possible to change the parameters while you are in Report view, which
changes your visualizations automatically.

Once your parameters are set up, using the Parameter window makes it much quicker to
filter your requirements without having to open the Power Query Editor.

Summary 349

Summary
Looking back at this chapter, we started off by looking at the differences between the Excel
and Power BI languages and how concatenation is similar but uses different languages.
The ampersand operator (&) was used to show how we can join different strings, dates,
and objects before examining how this was different, but similar, to using Text.From
and Text.Combine.

The setting up of a SQL server is a bit technical and normally, a technician would set this
up in a medium to large corporation, although this is changing in the current climate with
the use of scalable online platforms that allow you to purchase only what you require,
which makes this more affordable for smaller organizations. My advice when installing is
to make sure you concentrate on the different steps, as if you change a setting such as the
authentication, you might not be able to access your databases.

Lastly, we investigated parameters. We took an intensive look at setting up parameters and
accessing different data sources, as well as using parameters to filter data from previous
years, using parameters to order columns in ascending and descending order. In the final
part of this chapter, we looked at how we can set all of the parameter settings in Power BI's
Data view without having to go into Query editor.

The next chapter concentrates on custom functions and delves into the custom functions
of M.

11
Creating a Basic

Custom Function
In Chapter 9, Working with M, we introduced the M Power Query language and learned
how to to use and write the M syntax, including steps to reveal a list of functions and
definitions in Power Query.

This chapter will take you through the steps to create functions manually using the M
functional language in Power Query, as well as how to create a date and time column
using functions.

In this chapter, we're going to cover the following main topics:

•	 Creating a function manually using M

•	 Creating a DateTime column using three M functions

352 Creating a Basic Custom Function

Technical requirements
You should be familiar with the content that we covered in Chapter 9, Working with M,
and Chapter 10, Examples of M Usage, before delving into the topics covered here. It goes
without saying that you should be proficient at importing various data sources into Excel
or Power BI and be comfortable with the Power Query interface, being able to navigate it
with ease. You need an internet connection to download the relevant files from GitHub.
Also, the code files for this chapter can be found at the following link:

https://github.com/PacktPublishing/Learn-Power-Query

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=arwkny-WhIk&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=12&t=0s.

Creating a function manually using M
Just like Excel, Power Query (and Power BI) has many functions that you can use to
prepare or transform data. These are, of course, updated regularly by developers. When we
use icons and set options in Power Query, the program works hard behind the scenes to
generate the code to provide you with results to any functions you may apply to the data.

We can display a list of M functions using the #shared code in the Power Query formula
bar, as explained in Chapter 9, Working with M, in the Using #shared to return library
functions section. We can use this to build our data queries, but sometimes, we need to
construct personalized functions to make our lives easier and less complicated. By less
complicated, we mean being able to address repetitive tasks with one action instead of
multiple actions or construct them so that they can be applied to many different queries or
arguments. We will use a manual method of creating a custom function by constructing a
step manually in the advanced editor to transform a query into a function.

In this section, we will create a function that can be applied to any file you need and that
you can produce a set of data from. Imagine we work with monthly data; for instance, say
we receive sales figures each month for our company's sales representatives and we need
to export this data regularly to update a yearly projection. We can get Power Query to do
this for us by creating a custom function. The values, of course, will be different in each
monthly workbook depending on the scenario. This is because we use each scenario to
create a function with one parameter to export.

https://github.com/PacktPublishing/Learn-Power-Query
https://www.youtube.com/watch?v=arwkny-WhIk&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=12&t=0s
https://www.youtube.com/watch?v=arwkny-WhIk&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=12&t=0s
https://www.youtube.com/watch?v=arwkny-WhIk&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=12&t=0s

Creating a function manually using M 353

Here, we will learn how to edit a query to change the file path, and then duplicate the
query and work with Advanced Editor to convert code into a parameter to turn it into a
custom function. We will then test and invoke the function by connecting to a folder and
then display the results in a table:

Figure 11.1 – Graphical representation showing how multiple results are
transformed into one output table using a single parameter

For this example, we need a Power BI file called ChoklatoFlakSales.pbix, which
includes the MaySales query.

You can, however, start from scratch and import an Excel workbook named
May-ChoklatoFlakSales into Power BI if you prefer. Excel workbooks
have exactly the same structure and format. For this example, we have used the
May-ChoklatoFlakSales.xlsx, June-ChoklatoFlakSales.xlsx, and July-
ChoklatoFlakSales.xlsx workbooks.

Let's get started. We will break our scenario down into three main steps.

354 Creating a Basic Custom Function

Changing the file path of the query to a local path
As you will be using code files for this example, the path to the exercise files needs to
be updated to your local computer location. This is to ensure that when opening the
existing Power BI file (or the completed exercise file, for that matter) containing the query
example, the software will try and load the tables from the new path. Let's see how to go
about this:

Note
You can also load the workbook directly to Power BI from the GitHub path,
should you prefer to do so.

1.	 Open Power BI Desktop, and then launch the file called ChoklatoFlakSales.
pbix.

2.	 Within the Power BI file, we can see the MaySales query already in Power BI.

3.	 We need to transform our data using Power Query. Action Power Query by
selecting Home | Transform Data.

4.	 Click on the gear icon next to Source in the APPLIED STEPS pane.

5.	 You will see that there is an error displayed on the main window as the file path is
not recognized, and so the query will not load:

Figure 11.2 – Displayed error due to incorrect file path on query settings in Power Query

6.	 Click on Browse… to change the file path. Navigate to the location on the computer
where the May-ChoklatoFlaksales.xlsx workbook resides. Select the file
to update the path, and then click on Open. Click on the OK command to change
the path:

Creating a function manually using M 355

Figure 11.3 – Updating the file path in Power Query

7.	 The query is now updated in Power Query and the query will load.

Next, let's see how to create a function from a query manually.

Creating the function manually
We now need to transform our query so that it becomes a function, after which we will
assign a parameter to the query function. So, what is a parameter? Parameters were
explained in Chapter 10, Examples of M Usage, in the Using parameters section.

Let's see how to transform the query:

1.	 We will firstly duplicate the query called MaySales in Power Query.

2.	 Right-click on the MaySales query and choose Duplicate from the drop-down
menu provided.

3.	 A copy of the query is now visible under the existing MaySales query, named
MaySales(2).

356 Creating a Basic Custom Function

4.	 Open Advanced Editor to edit the code for the query by selecting View |
Advanced Editor:

Figure 11.4 – Accessing Advanced Editor in Power Query

5.	 We now need to select part of the code to edit into a parameter so that we are able to
run this code on any data source within the source folder. The following screenshot
identifies the portion of the code that we will need to change via the highlighted
code. The highlighted portion is currently the source path location of the data
source we imported into Power BI Desktop:

Figure 11.5 – The highlighted code that we will turn into a parameter query using Advanced Editor

6.	 To make the change to the source path, we will add the following line of code above
the let syntax:

 (FileBinary as binary) as table =>

Creating a function manually using M 357

This is shown in the following screenshot:

Figure 11.6 – The Advanced Editor view edited to include the parameter code above the let call

7.	 Click on Done to change the highlighted code into a parameter query. Notice that
because we edited the code, the MaySales(2) query has turned into a parameter
query. We can identify the parameter query thanks to the fx icon located to the left
of the query name:

Figure 11.7 – The parameter query applied to the query function

In this section, we learned how to edit a query using Advanced Editor to create a
parameter query. Now, let's test the parameter function that we have created in the
next section.

358 Creating a Basic Custom Function

Testing the parameter function
Here, we need to ensure that the parameter query works for us by linking it to a source
folder so that it can do its job. Remember that all the files in the folder need to be of the
same file type, otherwise you may encounter an error. Let's see how we test the function:

1.	 Click on Home | New Source | More… | Folder | Connect:

Figure 11.8 – Creating a new folder connection

2.	 Then, click on Browse… to find the file path you wish to connect to:

Figure 11.9 – Selecting the folder path

3.	 Click on OK to accept the folder.

Creating a function manually using M 359

4.	 Then, select Transform Data to add a new query to the Power Query interface:

Figure 11.10 – Choosing Transform Data to add the folder connection to Power Query
We will now use the Invoke Custom Function option to apply our function to the
files that we have added to the folder, as selected in the previous step. Essentially,
what we are getting here is a new column with the parameter query, which will
invoke the function.

5.	 Click on Add Column | Invoke Custom Function.

6.	 Provide a name for the new column in the New column name field. For this
example, we have used SalesInvoke. Choose MaySales (2) as the function query.
Leave the FileBinary option as Content, as shown:

Figure 11.11 – Invoking a custom function

7.	 Click on OK to continue.

360 Creating a Basic Custom Function

8.	 The new column, SalesInvoke, is added to the query:

Figure 11.12 – The new column is added to the query

9.	 Click on the SalesInvoke column to view the results for each of the source files:

Figure 11.13 – Clicking on the whitespace in the last column will display the
content of the file in the window below

10.	 Please note that if you happen to have file formats within the source folder that are not
the same as the file type you are invoking, you could encounter an error. For example,
we are invoking an Excel file format in this example. If I had .csv files in this folder,
or any other file type, then I would receive errors in certain cells because of the file
type difference. Remove the files from the folder before invoking the function.

Creating a function manually using M 361

11.	 Remove any columns you do not need for the custom function. Observe the
following screenshot:

Figure 11.14 – Removing unnecessary columns from the query
In this example, I have removed all the columns except Name and SalesInvoke.
You should now be left with the following columns in the query:

Figure 11.15 – The columns that remain after removing them from the query

362 Creating a Basic Custom Function

12.	 The final step in this process is to append all the data from the Excel workbooks into a
single workbook so that we see the May, June, and July sales in one combined result:

Figure 11.16 – Clicking on the double composite arrows (expand) will show the append options

13.	 Click on OK to view the result.

The beauty of this process is that any new datasets added to the folder path will be
appended to the table. All you need to do is refresh the data connection.

14.	 Add the August-ChoklatoFlakSales.xlsx workbook to the folder path and
watch the magic happen:

Figure 11.17 – The August workbook is added to the folder

Creating a function manually using M 363

15.	 Click on the Refresh All icon on the Home tab of the Power Query interface
to refresh the data. You will now see that the August sales have been added to
the dataset:

Figure 11.18 – Clicking on the Refresh All icon to pull in the new dataset

It is important to note that there are a number of methods to achieve the result in the
preceding example. The steps you have followed so far give you a good indication of the
magic that Power Query can provide when you need to update a workbook by appending
datasets. It is necessary to understand this process using the manual method, as used
here. This will benefit you more than clicking on a single button and not knowing how the
application works behind the scenes, using functions and parameters. The shorter method
uses the Combine Files icon on the Home tab:

Figure 11.19 – The Combine Files method

364 Creating a Basic Custom Function

If you are an experienced user of M, you will be able to create the code for all of the
preceding steps without using the interface as we have done in this example. I prefer to use
the manual method so that I understand what I am doing more thoroughly than having to
switch between code and testing all the time.

You can also use the Manage Parameters icon in the Home tab to create a binary
parameter, after which you could create a reference by right-clicking on the binary file.
The next step would be to create the custom function by right-clicking on the created
parameter query and then selecting Create Function.

The functions you want to perform to transform data are then actioned manually, after
which you would use Invoke Custom Function. So, the steps are very similar; they just
depend on the method that you prefer.

Having understood this, we will move on to the next section to create a date/time column
using three M functions.

Creating a date/time column using three M functions
In this section, we will learn how to create a function manually by creating a DateTime
column in Power Query using three M functions, namely, List.DateTimes,
Duration.TotalDays, and Time.LocalNow().

A comprehensive reference for all the date/time functions in Power Query can be found at
https://docs.microsoft.com/en-us/powerquery-m/date-functions.

The great thing about this Microsoft documentation is that you can copy code directly
from the website and paste it into your Power Query Advanced Editor window or the
formula bar. That way, you do not need to remember the code and can save a lot of time
when constructing M code. Locate the code you wish to use and then click on the Copy
button at the top right of the code:

Figure 11.20 – Copying M code from the docs.microsoft.com website

https://docs.microsoft.com/en-us/powerquery-m/date-functions

Creating a function manually using M 365

Before we delve into the M date functions, let's look at a really easy method to subtract
dates in Power Query without having to remember any code.

If you want to find the number of days between two dates in Power Query, you can use
the subtract dates function. This function is readily available from the Add Column
tab in Power Query. Perform the following steps to calculate the number of days between
two dates:

1.	 In the SSGDates query, we have a table listing products, as well as the Date
Sold, and Date Delivered columns. We want to subtract the two dates from
each other to find the number of days between the sold and delivered dates. The first
step is to select the columns to subtract. The order of the date columns is important
when selecting. If we select Date Sold before Date Delivered, the formula will
calculate a negative number due to the Date Sold date being before Date
Delivered. If you want a positive integer, then select Date Delivered before
selecting the Date Sold column:

Figure 11.21 – The SSGDates query

366 Creating a Basic Custom Function

2.	 So, first select the Date Delivered column, and then Date Sold. Click on
Add Column | Date | Subtract Days:

Figure 11.22 – Calculating the number of days between dates using the Subtract Days function

3.	 The result is entered in a separate column, showing the number of days between the
two dates:

Figure 11.23 – The number of days is generated in a separate column

Creating a function manually using M 367

4.	 Let's view the M code for this function. Click on View | Advanced Editor to see the
code. This is what we get:

Figure 11.24 – The M code for the Subtract Days function

In the preceding example, we looked at one method to subtract days from existing date
columns. For the next part of this section, we will get to know the List.DateTimes M
function. This function allows you to generate a list of dates or times based on your input.

The first step is to calculate the number of days between two dates:

1.	 Create a new query named NumbDays.

2.	 Click on View | Advanced Editor.

3.	 Change the name of the Source code text to NumbDays. This will be our
M formula function name, which we can use at a later stage in our
List.DateTimes formula:

Figure 11.25 – Renaming the source code NumbDays

368 Creating a Basic Custom Function

4.	 We will use the following calculation to subtract the two dates:

= #datetime(2019,01,01,00,00,00)-
#datetime(2020,06,17,00,00,00)

5.	 Click on Done to view the number of days between the two dates:

Figure 11.26 – Subtracting the dates to obtain the number of days between them

6.	 As we have a negative value for the number of days, simply switch the M code
around to produce a positive value:

= #datetime(2020,06,17,00,00,00)-
#datetime(2019,01,01,00,00,00)

7.	 Add a step by clicking on the fx icon in the formula bar, as follows:

Figure 11.27 – Creating a step

Creating a function manually using M 369

8.	 When we construct M code, we can type the code into the Advanced Editor
window or in the formula bar. Enter the following formula into the formula bar:

List.DateTimes(#datetime(2019, 01, 01, 00, 00, 0), 10,
#duration(0, 0, 1, 0))

This code will generate a date and time list of 10 records from January 1, 2019 with a
1-second interval:

Figure 11.28 – The List.DateTimes M code
Here, we have used the second operator, but you can do this for days, hours,
minutes, seconds, and so on.

9.	 We will edit the M code so that the list reflects every hour and remove the minute
operator by entering 0:

Figure 11.29 – The M code edited to reflect the increment by day, and not minutes

370 Creating a Basic Custom Function

10.	 Let's update the number of lines to 24 to meet the requirements for the number of
hours in a full day:

Figure 11.30 – The 24 rows in the list reflecting the number of hours in a day

11.	 Go back to the NumbDays step, where you will see the number of days between the
two dates. For this example, you will see 533 days between the two dates. We will
use the NumbDays variable instead of the 24 days in the M code to reflect these 533
days. Enter NumbDays into the formula in place of 24. You will see an error occur
immediately. The reason for this is that the variable entered is not actually a number,
so we need to tweak this a bit:

Figure 11.31 – The edited M code to reflect the NumbDays variable

Creating a function manually using M 371

12.	 This is where the Duration.TotalDays M function comes into play. Go back to
the NumbDays step and edit the M code to read the following:

=Duration.TotalDays(#datetime(2020,06,17,00,00,00)-
#datetime(2019,01,01,00,00,00))

Figure 11.32 – The variable is now a number by adding the Duration.TotalDays M code

13.	 If you click on the Custom1 step, you will now see that the 533 records
have updated.

14.	 The next step is to turn the values into a data table. Click on the To Table icon at the
top left of the ribbon:

Figure 11.33 – Creating a table from the date values

15.	 Click on OK to select the defaults and convert them into a table.

372 Creating a Basic Custom Function

16.	 Sort the table into ascending order to check that it shows January 1, 2019, and then
sort it into descending order. If you find that some days are missing when you have
sorted it into descending order, you need to tweak the M code a little further. This
is because we don't have the required 25 lines per day. We need to multiply the first
step by 24 so that all the hours in the day are covered:

Figure 11.34 – Editing the M code by multiplying by 24 to reflect
the required number of hours in each day

17.	 If we now move back to view the Sorted Rows step, we will see that the calendar
is still incorrect as it should be counting from 00 in the code. We now need to edit
the code further to include DateTime.LocalNow, which will return the date and
time of the system's current date and time:

Figure 11.35 – The DateTime.LocalNow function added to the M code

Summary 373

18.	 Click on the Sorted Rows step to view the change to the data:

Figure 11.36 – DateTime.LocalNow updated to the system's current date and time

In this section, we mastered working with dates in Power Query using the List.
DateTimes, Duration.TotalDays, and Time.LocalNow() M functions to create
a date and time column. Have a browse through the link provided at the start of the
section to broaden your knowledge about the other date and time functions that you can
apply to datasets. We hope that the three functions included in this topic have sparked
your interest and that you are already thinking of scenarios where you could apply them
to your datasets.

Summary
In this chapter, you mastered changing a file path to a different folder location on your
computer, and you should now be able to create an M function manually by editing code
using the Advanced Editor window to create a parameter function.

You should be able to test a parameter query and create a new column to invoke a
custom function. We covered Power Query date and time functions using the List.
DateTimes, Duration.TotalDays, and Time.LocalNow() M functions to create
a date and time column, and now we should be able to tweak the data using all three of the
functions to edit M code.

In the next chapter, we'll cover the differences between DAX and M. You will understand
the differences between the two languages by going through some examples and learning
to create calculated measures.

12
Differences Between

DAX and M
M is the mash-up functional language of Power Query. Its formal name is Mashup or
Power Query Formula Language, and it is used to query many data sources, while Data
Analysis Expression (DAX) allows functions, much like Excel, to work on data stored
in tables.

In this chapter, you will learn the differences between the two languages as we will look at
the properties of both DAX and M. We will discuss the DAX syntax to understand how
formulas are constructed, as well as look at how to add a DAX formula in Excel. Toward
the end of the chapter, you will learn how to create a calculated column to display the
result of a formula in a new column, and create a measure to calculate aggregates.

We will cover the following main topics in this chapter:

•	 Learning about the DAX and M functionality

•	 Constructing DAX syntax

•	 Creating a calculated column

•	 Creating calculated measures

376 Differences Between DAX and M

Technical requirements
It would be useful for to go through Chapter 9, Working with M, Chapter 10, Examples
of M Usage, and Chapter 11, Creating a Basic Custom Function, prior to starting this
chapter. The previous chapters contain valuable examples and discussions regarding
the M language. You'll will find all the relevant code files used in this chapter at
https://github.com/PacktPublishing/Learn-Power-Query.

For Code in Action video of this chapter please visit the following link: https://
www.youtube.com/watch?v=up4CCRsNj7I&list=PLeLcvrwLe186O_
GJEZs47WaZXwZjwTN83&index=13&t=0s.

Learning about the DAX and M functionality
In this section, you will learn the differences between DAX and M and find out when each
one is used, as well as their functions.

DAX is mainly used in data transformations in Power BI dashboards where you would
need to gain business analysis from existing data models. DAX is powerful when
required to produce, for instance, growth percentage analysis across a list of products
for specific date ranges, or to analyze market trends. Together with Power BI, DAX can
powerfully assist with real-world business challenges to create meaningful, interactive
business dashboards for reporting and decision-making. It is a formula language; it is not
considered a programming language as it is structured using custom calculations (in fields
and columns). As a formula language, DAX comprises an assembly of the following:

•	 Operators

•	 Constants

•	 Functions

Now, M code is used in the Power Query editor. Each time you create a transformation,
expressions are generated automatically. To view or edit any M code with the Power Query
interface, you need to visit either the Advanced Editor window or the formula bar. We have
already discussed and worked with M code in the other chapters of this section of the book.

https://github.com/PacktPublishing/Learn-Power-Query
https://www.youtube.com/watch?v=up4CCRsNj7I&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=13&t=0s
https://www.youtube.com/watch?v=up4CCRsNj7I&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=13&t=0s
https://www.youtube.com/watch?v=up4CCRsNj7I&list=PLeLcvrwLe186O_GJEZs47WaZXwZjwTN83&index=13&t=0s

Learning about the DAX and M functionality 377

In the following table, we have highlighted the main differences between the two language
platforms as a summary:

Table 12.1 – Differences between DAX and M

Now that we have learned about the different properties of DAX and M, let's investigate
DAX a little further.

378 Differences Between DAX and M

Constructing DAX syntax
Every language you come across will have a syntax and a structure. Syntax refers to all the
elements that you use to construct a formula. A formula usually consists of functions. In
Chapter 9, Working with M, in the Understanding the M syntax and writing with M section,
you learned all about the M syntax. In this topic, you will learn about the DAX table and
column name syntax.

It is important to note, especially if you are only just beginning to learn about DAX, that it
is broken up into two parts:

Table 12.2 – DAX tools breakdown

You need to understand these tools as you will need to use the correct tool for the DAX
code you are using. Often, we search for reference code and copy the code to adapt to our
scenarios, so be mindful of this as you will most likely end up with an error and waste
time trying to find out why the code does not work.

DAX functions and Excel functions are much the same in terms of behavior and type—for
example, their array and lookup functions. The main difference between the two is the
syntax. Excel uses cell references or ranges whereas DAX references a table or column in
the formula. It should be noted that you cannot blend Excel functions and DAX functions
in one formula. DAX will always require relationships to exist between tables when
performing lookups.

Let's take a look at the DAX syntax elements. The following is an example of a basic DAX
formula created in Power BI:

Figure 12.1 – Power BI Desktop DAX calculations

Constructing DAX syntax 379

Note that not all constructions of formulas will be the same, as some formulas do not
contain certain elements, such as functions.

The following table explains each part of the DAX syntax:

Table 12.3 – A breakdown of DAX formula syntax

Note
If you do not enter the correct syntax, a syntax error will be returned in the
column.

In the preceding table, we looked at the DAX syntax and how to construct a DAX formula.
Let's see where we formulate DAX syntax in the next topic.

380 Differences Between DAX and M

Constructing DAX formulas in Excel
To create a DAX formula in Excel, you use the Power Pivot window. The following
explanation assumes you know how to add Excel data to Power Pivot. This was explained
in Chapter 2, Power Pivot Basics, Inadequacies, and Data Management. There are two ways
to go about it:

•	 Click on the Power Pivot formula bar and start constructing the formula, as follows:

Figure 12.2 – The Power Pivot DAX formula construction

•	 Use the Design tab in the Power Pivot ribbon to access the fx (Insert Function)
icon to select a function to use within the formula.

We learned where to type a DAX formula in Excel in this section. The next section will
address how formula help is available when constructing a DAX formula.

Using IntelliSense
IntelliSense provides the user with a list of functions or parameters to help when
constructing a DAX formula. This is the same as when we enter a function in Excel.
The help tool is available to give us tips and offer help with functions by indicating
what we need to make the formula work. This is the same for DAX formulas. By
entering characters such as parentheses, quotes, or square or curly brackets, IntelliSense
automatically creates the closing element for these characters.

IntelliSense also offers different types of elements to choose from by providing a
drop-down list of elements. To the left of these elements, you will see an icon. The cube,
triangle, square, and circle icons depict different things. The cube signals all the native M
functions and the triangle, circle, and square are for all the variables, steps, parameters,
constants, query names, and so on.

Constructing DAX syntax 381

IntelliSense also highlights keywords and offers parameter hints; help is available at
your fingertips:

Figure 12.3 – A DAX IntelliSense example using the formula bar in Power Pivot

Here is an example of IntelliSense in Power Query using M, showing the cube element to
help with code construction:

Figure 12.4 – An M code IntelliSense example using the Advanced Editor window in Power Query

Now that you understand DAX syntax and construction and know how IntelliSense can
support formula construction, we will introduce you to DAX formula types.

382 Differences Between DAX and M

Creating a DAX formula
There are a number of formulas that you would create in Power BI using DAX. These are
all visible on the Power BI ribbon under the Calculations group—namely, New measure,
Quick measure, New column, and New table, as shown:

Figure 12.5 – The Calculations group under the Home tab in
Power BI Desktop to access the DAX features

Here is an explanation of the three main types of DAX formulas. The following
calculations described are accessible via the Calculations group under the Home tab.
Here, you will see New measure, Quick measure, New column, and New table:

•	 Calculated columns: These are used to perform calculations on rows automatically
by adding a column or columns from different tables.

•	 Quick measures: These are built-in measure templates, which are already
constructed for you and can be added without prior knowledge of coding.

•	 Calculated measures: These do not take up any physical memory and the results
are more dynamic due to their adaptability. This type of calculation always requires
an aggregator (function).

•	 Calculated tables: With this formula, you can create new tables and data.

Now that you have an overview of the different types of DAX calculations available, we
will look at some of them in detail.

Understanding the DAX formula and storage engine 383

Understanding the DAX formula and
storage engine
DAX has a formula engine and a storage engine, which are responsible for running DAX
queries within Power BI. In the following table, we have outlined the responsibility of each
engine and a summary of the main advantages and disadvantages of each:

Now that you have an understanding of what tasks the storage and formula engine
perform in DAX, let's discuss some examples in the following sections.

384 Differences Between DAX and M

Creating a calculated column
In this section, we will create a calculated column in Power BI Desktop to slice or filter a
value or calculation on every row in a table. Let's run through the logic of what creating a
calculated column means.

A calculated column is a new column that is added to an existing table. For each row of
the table, the DAX formula is calculated immediately, just like using the autofill handle
in Excel to fill in a formula. Be mindful of the fact that when using calculated columns,
the result of the calculation is always stored in memory, unless of course it is reloaded
or released when exiting or opening up Excel/Power BI. This will cause the table to be
refreshed, which forces the column to recalculate. Let's see how this works:

1.	 Open Power BI. For this example, we will be using the SSGThemePark.pbix file.

2.	 You can create the DAX formula in any view, but I prefer the table view so that I
can identify the data and see how the data is structured in the columns. It makes it
easier when you can see column headings when working with formulas. The view
you choose to create the DAX formula in is purely based on personal preference.

3.	 Click on the New column icon in the Calculations group of the Home or Table
tools tab. A new column is inserted to the right of the existing dataset, with a
heading named Column. Notice that the formula bar is also active at this point,
waiting for user input:

Figure 12.6 – A new column is added to the existing dataset and the formula bar is active

4.	 To construct the DAX formula, simply type it into the formula bar. The formula
bar is situated directly above the table headings. We will use an easy example to
calculate the salary for each employee based on the hours worked multiplied by the
hourly rate.

Creating calculated measures 385

5.	 The formula will be entered as follows. Change the Column text to SALARY so that
the column heading is relevant to the calculation being performed on the column.
After the = sign, start typing the name of the column that you would like to use; in
this case, it will be the HRS column. Notice that once you start typing, the program
automatically populates suggestions for you. Also, notice how the icons differ in the
drop-down list according to the elements populated. In the following drop-down
list, we can see function icons and table icons. Double-click on Table1[HRS] to
include it in the formula:

Figure 12.7 – The list is filtered as you type the name of the column you wish to use in your formula

6.	 Add the multiplication operator (*), then type HOURLY RATE to end the
DAX formula:

Figure 12.8 – The DAX formula is entered to calculate row values

7.	 This will now update the SALARY column, as shown in the preceding screenshot.

You have now learned how to create a calculated column using DAX formula
construction. We will now look at the next type of DAX calculation—using measures.

Creating calculated measures
In this section, we will learn when to use the calculated measure feature and how to create
a new measure by adding a function or expression. Let's look at some of the things we
need to know before creating a calculated measure.

386 Differences Between DAX and M

All measures need to contain a function. A measure cannot work without the table
column you are creating the measure on having a function (sum, min, count, and so on)
within the formula—this is the difference between a calculated column and a calculated
measure. This is called an aggregator (function), and without an aggregator, it is called
a naked column in the programming world. IntelliSense is very useful here as it will
complete your code for you.

The beauty of measures is that they are only calculated when they are accessed, and so
they don't use up your memory. They also allow many different outputs to be produced by
just changing the filter criteria of the existing measure. Measures are created in the Report
or Data view in Power BI.

A measure can be applied across tables from one query to another with ease. It adapts just
the same as an Excel formula would in a workbook when referencing cells. We can move
measures without losing any functionality within the measure. When we create calculated
columns, the data is stored in the xVelocity engine, so calculated columns take up more
storage in your database. The virtual memory used in calculated columns is much smaller,
however, when interacting through reports. Measures are faster to load as they are not
stored in memory.

Before creating a calculated measure from scratch, let's have a look at the Quick measure
feature, which provides built-in, readily created formula templates for use.

Using quick measures
We can use measures that are built for us, or we can create our own measure constructions
using DAX formulas. If you are a beginner, the best method is to use the Quick measure
feature, which returns a list of common calculations for you to choose from and apply to
your dataset. This will help you to understand DAX formulas and become familiar with
the DAX structure.

Take the following steps to test this measure:

1.	 Open the dataset you wish to perform the measure on. We will use SalesData.
pbix for this example.

2.	 From the Home tab, locate the Quick measure icon and select it, or right-click on
an existing table and select Quick measure:

Creating calculated measures 387

Figure 12.9 – The Quick measure option in Power BI

3.	 The Quick measures dialog box will populate, where you can select from a list of
calculations to apply to your table.

4.	 Select Year-to-date total for this example.

5.	 Drag the fields from the table that you wish to use in the calculation. For this
example, we will drag the Sum of TOTAL SALES field from the Fields list into the
space provided under the Base value setting:

Figure 12.10 – Quick measure calculations

388 Differences Between DAX and M

6.	 Notice how you can change the calculation type by clicking on the drop-down
arrow to the right of the box, as in the following screenshot:

Figure 12.11 – Adding a field to the Base value field or selecting a function from the list

7.	 Drag the DATE SOLD field from the Fields list into the space provided under the
Date setting.

8.	 Click on OK to let Power BI work out the DAX function for you.

The measure is added to the Fields list pane:

Figure 12.12 – A measure called TOTAL SALES YTD added to Field list

9.	 Drag the TOTAL SALES YTD measure onto the existing table dashboard. The table
is updated with the new column reflecting the YTD:

Creating calculated measures 389

Figure 12.13 – The updated dashboard

10.	 Click in the formula bar to view the DAX formula that was created by running
through the previous few steps in the user interface:

Figure 12.14 – The DAX formula for TOTAL SALES YTD

After learning about the Quick measure feature, we can now investigate further by
constructing our own DAX measure using code.

Formulating a DAX measure from scratch
We will continue with the example code file from the preceding section to learn about the
CALCULATE and FILTER DAX formulas.

390 Differences Between DAX and M

As we will be calculating the sum of the sales by quarter, we will need the Filter
function to divide the quarter into categories. After we have done this, the formula will
calculate the total sales according to the quarter categories. The reason for using this
measure is that a quarter can have new salary information refreshed at any time, thereby
increasing the number of rows.

Let's create a new measure to add to our report dashboard:

1.	 Using the example file from the previous example, SalesData.pbix, we will add
the TOTAL SALES field to the dashboard as a Card visualization type (just next to
the existing table). Use the Format icon to change the Data label setting to None to
display the total sales for the entire dataset. This is done to show you that there is no
filter applied to this field:

Figure 12.15 – The TOTAL SALES field added to the dashboard as a Card visualization

2.	 Resize the total sales card so that it does not take up the entire screen.

3.	 Add the Year, Region, and TOTAL SALES fields from the Fields list into the white
space of the dashboard to create a filter. This is done to show you that we can create
filters without DAX formulas, too:

Creating calculated measures 391

Figure 12.16 – Year, Region, and TOTAL SALES added to the dashboard

4.	 Next, we will look at how to work out the total sales per season. Make sure you have
clicked on the Reports icon in the navigation pane.

5.	 Drag the Season and TOTAL SALES fields onto the dashboard. This automatically
creates a filter on the Season column for you. Although this is easier than creating a
measure, it would be better practice to do this using a measure as you would need to
use measures as expressions when building a DAX formula:

Figure 12.17 – Season and TOTAL SALES on the dashboard
Let's do the same thing here, but by using a measure instead.

6.	 Select the table you want to use for the measure before creating the measure;
otherwise, it will select the first table by default. Note that this can be changed later,
but it is easier if you select the table beforehand.

392 Differences Between DAX and M

7.	 In the Power BI interface, select New measure. We will be typing the following code
into the formula bar in order to work out the total sales for each season using a filter
and a calculation:

Figure 12.18 – A TOTAL SALES SUM formula
Note that if you do not have an aggregator (function) in your code, then you will
not be able to create a measure—IntelliSense will watch you while you work and
will not offer you the field name in order to go further with the code if you omit
the function. If you don't see the field populate in the auto-complete pane when
constructing your code, then it is probably because you do not have the correct
conditions in place to create the measure.

When you start typing the code, you will be offered suggestions (through
IntelliSense) based on your input. To navigate through the list offered, simply
use the down arrow on the keyboard and then the Tab key to select the element.
Alternatively, just double-click on an element to add it to the code.

To add a new line in your code, press Shift + Enter on the keyboard. So, now you
know a few things about entering code.

8.	 If you now drag the TOTAL SALES SUM measure from the Fields pane onto
the table, you will notice that the values are exactly the same. The underlying
difference is that the measure will remain the same, whereas the TOTAL SALES
column could be renamed or removed at some stage and cause problems with our
formula in the future.

9.	 We can remove the TOTAL SALES column from our visualization now as we have
put the measure in place.

Creating calculated measures 393

10.	 Now, we will use the CALCULATE function to calculate the sum of our quarters.
When using the CALCULATE function, we need to have a measure—we cannot use
the table and column references.

11.	 Type the measure name, then =, followed by the CALCULATE function, which
will require an expression (a measure) within parentheses. Refer to the following
screenshot to see how this should look:

Figure 12.19 – Measure code to calculate total sales

12.	 Drag the CALQ measure from the Fields list onto the table dashboard:

Figure 12.20 – The CALQ measure added to the dashboard table

394 Differences Between DAX and M

13.	 CALCULATE is really powerful when you add the FILTER function to it. We will
now combine the FILTER function with the CALCULATE function to filter the
Season field for Spring only:

Figure 12.21 – The CALCULATE filter for Spring

14.	 Now, drag CALWFILTER from the Fields list onto the table dashboard. Notice how
only Spring has a value now.

15.	 Add the Year field to the table dashboard:

Figure 12.22 – Year added to the table dashboard

16.	 The filter now works for 2018 and 2019. You can use the sort drop-down arrow on
the Year column to sort it in descending or ascending order to see the results.

Creating calculated measures 395

I hope this gives you some idea of what is possible with DAX formula measures. Next, we
will move on to organizing measures.

Organizing measures
Measures are identifiable by a calculator icon to the left of the measure name in the Power
BI interface:

Figure 12.23 – Measure identified by a calculator icon

We can place all our created measures into a display folder in the folder list pane. All of
our measures can be stored in one folder, even if they are associated with different tables:

1.	 Click on the Model icon in the navigation pane.

2.	 Select the measure you wish to move into a display folder:

Figure 12.24 – Display folder creation in the Model view

396 Differences Between DAX and M

3.	 The Properties pane will open to the left of the Fields list.

4.	 In the Display folder area, type the name of the folder you wish to place the
measure into.

If you want to create a subfolder, then type a backslash (\) after the display folder
name entered into the area provided—for instance, Measures\Sales.

You have now learned how to organize your folder structure in the Fields list pane.

Summary
In this final chapter of the book, you have learned all about the differences between DAX
and M functionality. You will now be confident in identifying the different parts of the
DAX formula syntax structure and should be knowledgeable about where to construct
DAX formula in Excel, Power Query, and Power BI.

We also touched on IntelliSense, which aids in DAX formula construction, and we know
about the three main types of DAX formula (which are calculated columns, calculated
measures, and calculated tables). You can create a calculated column, as well as quick
measures and calculated measures. You can also create folders in which to store measures
in the Field list of the Power BI interface. Measures will help you construct an expression
formula to calculate a result specific to a purpose, dynamically and in real-time.

We hope that you now have a wealth of knowledge after reading this book and that it has
instilled a desire to learn more about this extremely powerful, in-depth application named
Power Query.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

DAX Cookbook
Greg Deckler
ISBN: 978-1-83921-707-4

•	 Understand how to create common calculations for dates, time, and duration
•	 Create key performance indicators (KPIs) and other business calculations
•	 Develop general DAX calculations that deal with text and numbers
•	 Discover new ideas and time-saving techniques for better calculations and models
•	 Perform advanced DAX calculations for solving statistical measures and other

mathematical formulas
•	 Handle errors in DAX and learn how to debug DAX calculations
•	 Understand how to optimize your data models

https://www.packtpub.com/data/dax-cookbook

398 Other Books You May Enjoy

Learn Microsoft Office 2019

Linda Foulkes

ISBN: 978-1-83921-725-8

•	 Use PowerPoint 2019 effectively to create engaging presentations

•	 Gain working knowledge of Excel formulas and functions

•	 Collaborate using Word 2019 tools, and create and format tables and
professional documents

•	 Organize emails, calendars, meetings, contacts, and tasks with Outlook 2019

•	 Store information for reference, reporting, and analysis using Access 2019

•	 Discover new functionalities such as Translator, Read Aloud, Scalable Vector
Graphics (SVG), and data analysis tools that are useful for working professionals

https://www.packtpub.com/business-other/learn-microsoft-office-2019

Leave a review - let other readers know what you think 399

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

Symbols
#shared libraries

lists, creating 304
number data types, creating 302, 303
records, creating 305
relevant data, searching 307, 308
table data types, creating 306
text data types, creating 301, 302
using, to return library functions 301

A
Advanced Editor window

comment, adding to 74
comment, adding with formula bar 75
comment, keeping visible in

formula bar code 75
using 67-73

ampersand operator (&) 321
And/Or conditions

used, for filtering table data 153-155
Android

Power Query Office 12
APPLIED STEPS

documenting 61, 62
multiple steps, deleting 60

renaming 61, 62
working with 60

automatic page refresh
about 245, 246
reference link 245
setting up 245

B
basic power query

creating 76-79

C
calculated column

about 382
creating 384, 385

calculated measures
about 382
creating 385

calculated tables 382
chart

selecting 272-279
comma-separated value (CSV) 236
concatenate formula

using, for merging 314-320

402 ﻿

conditional column
creating, with the if…then…

else statement 150-153
Create, Retrieve, Update,

Delete (CRUD) 96
CSV file

importing, with M language 308-310

D
dashboard

publishing 279-282
saving 279-282
sharing 279-291

dashboard, best practices
about 292
audience 292
clutter 292
color 292
size 292

data
adding, to data model with

Power BI 267-271
collecting, and connecting

with Power BI 252-258
connecting, from relational database 111
connecting, from table or range 99-103
connecting, through Power BI 114-117
connecting, to web 103-111
connecting, through Excel's Get

& Transform 112, 113
custom connections 117-119
refreshing 144-147
turning, with pivot tool 140-144
turning, with unpivot tool 140-144

Data Analysis Expression (DAX) 375

Data Analysis Expression
(DAX) functionality

versus M functionality 376, 377
database management systems

(DBMS) 98
databases

about 96-98
types 96-98

data, custom connections
connecting, from folder 124-132
connecting, from Workbook 120-123

dataflow refresh
reference link 246

data model
about 4
data, adding with Power BI 267-271
pivot table, adding 34-36
reference link 4

data profiling, tips
about 89-91
column distribution 94
column profile 92
column quality 92, 93

dataset
selecting 272-279
types 226

data source
parameterizing 335-341

Data source settings
exploring 133
exploring, from Excel 133-135

data table
previewing 57-59

data type conversions 321, 322
Data view

parameters, using 348

﻿ 403

data visualization
selecting 272-279

date/time column
creating, with M functions 364-373

DAX formula
about 383
constructing, in Excel 380
constructing, with IntelliSense 380, 381
creating 382
types 382

DAX formulas, types
calculated columns 382
calculated measures 382
calculated tables 382
quick measures 382

DAX measure
formulating, from scratch 389-394
organizing 395, 396

DAX storage engine
about 383
advantages 383
disadvantages 383

DAX syntax
constructing 377-379

E
Excel

Data source settings, exploring
from 133-135

DAX formulas, constructing in 380
pivot table, creating in 30-33
Power Query, launching with 18

Excel files
combining 258-266

Excel's Get & Transform
data, connecting through 112, 113

F
function

creating, manually 355, 356
creating, manually with M 352, 353

G
Go to Column feature

using 66, 67

I
IF function

writing, in Power Query 184-190
Import storage mode setting

selecting 233
incremental refresh

about 244
advantages 245
reference link 245

index functions 201-213
IntelliSense

used, for constructing DAX
formulas 380, 381

L
library functions

returning, with #shared libraries 301
lists

creating 304
Load To… options

default custom load settings,
modifying 80-83

discovering 79
queries, loading to worksheet

manually 83-88

404 ﻿

M
M

used, for creating function
manually 352, 353

Mac
Power Query Office for 13

Mashup (M) 298
merging

with concatenate formula 314-320
M functionality

versus DAX functionality 376, 377
M functions

used, for creating date/time
column 364-373

Microsoft SQL Server Analysis Services
execution, investigating 234, 235

M language
about 298
used, for importing CSV file 308-310
writing 299-301

modular functions
about 201
beginning with 201-204

modulo 201
M syntax 299-301
multiple files

appending 214-219
multiple tabs

appending 220-222

N
navigation pane

about 54
editing, with query options 55
queries, grouping 55, 56
used, for adding new query 54, 55

number data types
creating 302, 303

O
OneDrive refresh

performing 241-243
viewing 241, 242

online analytical processing (OLAP) 98
online transactional processing

(OLTP) 98

P
parameter function

testing 358-364
parameters

adding, to control statement
logic 344, 345

adding, to filter data 342, 343
adding, to order objects 346, 347
using 335
using, in Data View 348

parameter table
creating, for queries 191-195
data source, modifying 196-200

PivotChart
creating 248-252

pivot table
adding, to data model 34-36
creating 23-30
creating, in Excel 30-33
Power Pivot, creating 30
relationships, creating 37-39

pivot tool
used, for turning data 140-144

Power BI
about 6

﻿ 405

data, connecting through 114-117
launching 18
Microsoft SQL Server Analysis Services

execution, investigating 234, 235
on Mac/Apple 10
on Windows 6
Power Query, accessing from 18-20
refresh types 235, 236
stored imported data, viewing 234
using, for collect and connect

data 252-258
using, to add data to data

model 267-271
versions 6

Power BI App, on iPhone
download link 10

Power BI Desktop
download link 7
versus Power BI Free 6-10

Power BI Desktop Storage mode setting
viewing 227-230

Power BI online
reference link 237

Power Pivot
about 4, 5
activating 16, 17
calculated fields 48
creating 30, 248-252
launching 18
limitations 47
Microsoft Office versions 48
multiple items, selecting 47
preview 48

Power Pivot Office 2010 6
Power Pivot Office 2013 5
Power Pivot Office 2016 5
Power Pivot Office 2019 (office 365) 5

Power Query
about 11, 39
accessing, from Power BI 18-20
activating 16, 17
calculated column, creating 39-43
calculated field, creating 44, 45
features 11, 12
IF function, writing 184-190
installing, in Office 2010 15
installing, in Office 2013 15
launching 18
launching, within Excel 18
Office 2019 (Office 365), versus

Office 2016 13, 14
Power Pivot table, creating 46, 47

Power Query add-in from
download link 15

Power Query Office
for Android 12
for Mac 13
for Windows 12
versions 12

Power Query window
data table, previewing 57-59
elements 52, 53
main ribbon 53
tabs 53

Q
queries

parameter table, creating 191-195
Queries list 54
query

file path, changing to local path 354, 355
Query Settings pane

about 59
query properties, modifying 59

406 ﻿

quick measures
about 382
using 386-389

R
records

creating 305
refresh types, Power BI

about 235, 236
automatic page refresh 245, 246
dataflow refresh 246
incremental refresh 244, 245
OneDrive connection,

refreshing 236-240
OneDrive refresh, performing 241, 242
OneDrive refresh, viewing 241-243
scheduled refresh 243, 244

relational database
data, connecting from 111

relevant data
searching 307

S
scheduled refresh

setting 243, 244
SQL server

setting up 322-328
SQL Server 2016 Developer edition 323
SQL Server Developer edition

about 322
download link 323

SQL Server Management Studio (SSMS)
installing 329-334

star schema 97
storage modes

about 226

setting 226
viewing 30, 31

structured column 169
Structured Query Language (SQL) 111

T
table data

age, extracting from data 177, 178
altering, with column and

row tools, using 147
appending 172-174
appending tool, using 167
column, removing 147, 148
columns, extracting 178, 179
columns, merging with

combine 167-170
columns, splitting 164-167
conditional column, creating with the

if…then…else statement 150-153
duplicate rows, removing 161, 162
dynamic multiple criterion

filters, creating 158-160
extract column features, using 179-181
extraction tools, using 177
filtering, with And/Or

conditions 153-155
grouping 175-177
index column, using 149, 150
merging tool, using 167
null values, replacing 162, 163
single criteria filters, creating 156-158
text and values, merging into

column 170, 171
top or bottom rows, removing 148
working, with header row 163, 164

table data types
creating 306, 307

﻿ 407

text data types
creating 301, 302

Transact-SQL (T-SQL) 323

U
unpivot tool

used, for turning data 140-144

V
View settings

font, modifying 63, 64
formula bar, viewing 63
Go to Column feature, using 66, 67
investigating 62
query relationships, showing 64-66

W
web

data, connecting to 103-111
Windows

Power Query Office 12

	Cover
	Copyright
	About PACKT
	Contributors
	Table of Contents
	Preface
	Section 1:
Overview of
Power Pivot and
Power Query
	Chapter 1: Installation and Setup
	Technical requirements
	Introducing Power Pivot
	Power Pivot Office versions and differences

	Introduction to Power BI
	Power BI versions and differences
	Mac/Apple

	Introduction to Power Query
	Features of Power Query
	Power Query Office versions and differences
	Installing Power Query in Office 2013 and 2010
	Activating my Power Query/Pivot again
	Launching Power Query, Power Pivot, and Power BI
	Launching Power Query within Excel
	Accessing Power Query from Power BI

	Summary

	Chapter 2: Power Pivot Basics, Inadequacies, and Data Management
	Technical requirements
	Creating a pivot table
	Creating a Power Pivot
	Creating a table in Excel
	Adding tables to the data model
	Creating relationships between tables

	Power Query to the rescue
	Creating a calculated column
	Creating a calculated field
	Creating a Power Pivot table

	Shortcomings of Power Pivot
	Problem 1 – selecting multiple items
	Problem 2 – Power Pivot preview
	Problem 3 – calculated fields
	Problem 4 – Microsoft Office versions

	Summary

	Chapter 3: Introduction to the Power Query Interface
	Technical requirements
	The Power Query window and its elements
	The main ribbon and tabs
	The navigation pane or the Queries list
	Data table preview
	The Query Settings pane
	Working with APPLIED STEPS
	Investigating the View settings
	Using Advanced Editor

	Creating a basic power query
	Discovering the Load To… options
	Changing the default custom load settings
	Loading queries to the worksheet manually

	Data profiling tips
	Column profile
	Column quality
	Column distribution

	Summary

	Chapter 4: Connecting to Various Data Sources Using
Get & Transform
	Technical requirements
	A brief introduction to databases
	Connecting from a table or range
	Connecting data to the web
	Connecting from a relational database
	Connecting through Excel's Get & Transform tool
	Connecting through Power BI

	Understanding custom connections
	Connecting from Workbook
	Connecting from a folder

	Exploring data source settings
	From Excel

	Summary

	Section 2:
Power Query Data Transformations
	Chapter 5: Transforming Power Query Data
	Technical requirements
	Turning data with the unpivot and pivot tools
	Refreshing data

	Basic column and row tools
	Removing columns
	Removing top or bottom rows
	Using the index column
	Creating a conditional column with the if…then…else statement
	Filtering data using the And/Or conditions
	Creating single-criteria filters
	Creating dynamic multiple-criterion filters
	Removing duplicate rows
	Replacing null values
	Working with the header row
	Splitting columns

	Merging and appending tools
	Merging columns using combine
	Merging text and values into one column
	Appending (combining) tables

	Grouping data
	Working with extraction tools
	Extracting an age from a date
	Extracting columns
	Using the extract column features

	Summary

	Chapter 6: Advanced Power Queries and Functions
	Technical requirements
	Writing an IF function in Power Query
	Creating a parameter table for queries
	Changing the monthly data source

	Understanding the Index and Modulo functions
	Beginning with the modulo function
	Understanding index functions

	Appending multiple files
	Appending multiple tabs
	Summary

	Chapter 7: Automating Reports in Power Query
	Technical requirements
	Understanding the storage modes and
dataset types
	Viewing the Power BI Desktop Storage mode setting

	Choosing the Import storage mode setting
	Looking at where Power BI stores data
	Investigating whether Microsoft SQL Server Analysis Services is running

	Understanding the Power BI refresh types
	Learning how to refresh a OneDrive connection
	Viewing and performing a OneDrive refresh
	Setting a scheduled refresh
	Incremental refresh
	Automatic page refresh
	Dataflow refresh

	Summary

	Chapter 8: Creating Dashboards with Power Query
	Technical requirements
	Creating a basic power pivot and PivotChart
	Using Power BI to collect and connect data
	Combining files

	Using Power BI to add data to a data model
	Selecting data visualization, a dataset, and an appropriate chart
	Saving, publishing, and sharing a dashboard
	Sharing a dashboard
	Best practices

	Summary

	Section 3:
Learning M
	Chapter 9: Working with M
	Technical requirements
	The beginnings of M
	Understanding the M syntax and learning how to
write M

	Using #shared to return library functions
	Text data types
	Number data types
	Lists
	Records
	Table data types
	Searching for relevant data

	Importing a CSV file using M
	Summary

	Chapter 10: Examples of M Usage
	Technical requirements
	Merging using the concatenate formula
	Data type conversions
	Setting up a SQL server
	Installing SQL Server Management Studio
	Using parameters
	Parameterizing a data source
	Using parameters in the Data view

	Summary

	Chapter 11: Creating a Basic Custom Function
	Technical requirements
	Creating a function manually using M
	Changing the file path of the query to a local path
	Creating the function manually
	Testing the parameter function
	Creating a date/time column using three M functions

	Summary

	Chapter 12: Differences Between DAX and M
	Technical requirements
	Learning about the DAX and M functionality
	Constructing DAX syntax
	Constructing DAX formulas in Excel
	Using IntelliSense
	Creating a DAX formula

	Understanding the DAX formula and
storage engine
	Creating a calculated column
	Creating calculated measures
	Using quick measures
	Formulating a DAX measure from scratch
	Organizing measures

	Summary

	Other Books You May Enjoy
	Index

